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ABSTRACT
Data has become a high-value commodity in manufacturing. There is a growing realisation that
the data-driven applications could become strong differentiators of manufacturing enterprises. To
guide the developments in digitisation, a widely accepted framework is needed. In the absence of
the universal framework, the components making a digital enterprise are captured in an example
framework that is introduced in the paper. The adoption of new technology and software solutions
has increased complexity of manufacturing systems. In addition, new product introductions have
becomemore frequent and thedemandmore variable. Adigital space enables optimisation and sim-
ulation of decisions before their realisation in the physical space. Predictive modelling with its time
dimension is a valuable actor in the digital space. Three challenges of predictive modelling such as
model complexity, model interpretability, andmodel reuse are identified in this paper. The coverage
of each challenge in the literature is illustrated with the recently published papers. Themain aspects
of these challenges and the synthesis of the developments in digital manufacturing are articulated
in the form of eight observations that could guide the future research.
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1. Introduction

The first usage of the term ‘digital manufacturing’
dates back around the year 2000, initially referenced in
commercial magazines and conferences. The past two
decades have produced a large volume of research con-
tent in digital manufacturing. There is a need to syn-
thesise the developments and capture the main trends
which is accomplished in this paper. To set the stage
for accomplishing this goal, a brief review of the repre-
sentative literature is presented next. Cheng and Webb
(2006) published a collection of papers presented at the
4th International Conference on e-Engineering and Dig-
ital Enterprise Technology. The papers summarised the
developments in digital manufacturing and enterprise
technologies.Mahesh et al. (2007) presented a framework
for distributed manufacturing using agents and included
digital manufacturing in its title. Nylund and Anders-
son (2011) discussed a framework for extended digital
manufacturing systems. Some aspects of the framework
embracing modelling, simulation, analysis, and change
management were illustrated with an industrial example.
A methodology for estimation of costs in digital manu-
facturing was presented in Jin et al. (2012). A prototype
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tool estimating the cost of manufacturing and assem-
bly operations was developed and illustrated with an
industrial example. Mourtzis et al. (2015) discussed dif-
ferent applications of simulation in digital manufactur-
ing. The applications in product design, process design,
and enterprise resource planning were highlighted. In
the special issue of the International Journal of Produc-
tion Research, Chien et al. (2020) have assembled research
papers on algorithms, applications, and case studies on
applications of artificial intelligence in manufacturing
and logistics systems. This special issue summarised the
accomplishments and outlined future developments in
digital manufacturing. A perspective on digital manufac-
turing as an agent integrating the functional areas of an
enterprise was presented in Park, Woo, and Choi (2020).
Dictionaries and ontologies serve as enablers of digiti-
sation. An extended version of the previously developed
ontology of functionally graded materials was presented
in Ali et al. (2021). A data schema for small manu-
facturing enterprises was developed and implemented.
The speed of data processing is a key factor impact-
ing the latency in digital twins. Talwar et al. (2021)
published a systematic literature review on big data in
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operations and supply chain management. Besides iden-
tifying trends and areas of future research, a new frame-
work to benefit production managers was developed.
Dolgui and Ivanov (2022) discussed implications of 5G
technologies in digital supply chains andoperationsman-
agement. The recently published paper by Zhou et al.
(2022) summarised the developments in intelligent man-
ufacturing in the 2005–2020 period with the focus on
value creation, resource configuration, capacity and pro-
duction planning, scheduling, and logistics. The paper
by Balfaqih (2023) offers insights into applications where
artificial intelligence integrated them with supply chain
management. The concepts presented are intended for
logistics and supply chain managers. Manufacturing has
experimented with different forms of modelling and data
since its early beginnings (Kuo and Kusiak 2019). Models
ranging from simple analysis of a handful of data points
and operations research to real-time simulation and vir-
tual reality have been used. The confluence of multiple
factors, including progress in manufacturing technology
and artificial intelligence, has raised a bar for digitisation
in manufacturing. Some of the new concepts that have
been developed are highlighted next.

Of all concepts covered in the digital manufactur-
ing literature, digital twin has received most attention.
It is to serve as a digital replica of the physical man-
ufacturing space. The requirements for the design of a
digital twin reference model for fault diagnosis of rotat-
ing machinery were presented in Wang et al. (2019).
Zheng, Lu, and Kiritsis (2021) elaborated on the concept
of cognitive digital twin versed in ontology and knowl-
edge graphs. Reference architectures and integration of
mission-specific digital twins were discussed. A digital
twin of a rotor was developed and demonstrated in diag-
nosis and adaptive degradation applications. Liu, Ong,
and Nee (2022) offered a comprehensive survey of digital
twin implementations based on analysis of 121 published
papers. The Internet of Things and Services (IoTS) is
closely aligned with the digital twin concept. Haghne-
gahdar, Joshi, and Dahotre (2022) surveyed 93 papers in
the IoTS domain. Applications of artificial intelligence
technologies in machining such as predictive modelling,
parameter optimisation and control, chatter stability, tool
wear, and energy conservation were discussed in Chuo
et al. (2022). The challenges of Artificial Intelligence (AI)
technologies, such as data quality, knowledge transfer,
and eXplainable AI were also addressed.

The best recognition of the level of interest in dig-
ital manufacturing is the recently released draft of the
‘Digital Engineering Measurement Framework’ (DEMF
2022) developed by experts from different industries,
government, and academia. Though many frameworks
and reference models exist, this framework is recent, and

it recognises that the industry is undergoing a transfor-
mation where the traditional engineering requirements,
design, development, integration, and verification meth-
ods based on documents and artefacts are being replaced
by digital models and cross-functional digital represen-
tations of system designs and end-to-end solutions. The
framework covers a range of topics related to digital engi-
neering, e.g. state of the practice, definitions of terms and
concepts, mapping data to measurement specifications,
measurement principles, andmeasurement concepts and
specifications.

Though the framework (DEMF 2022) is focused on
measurements, it touches on many aspects of digital
enterprises. Of particular interest is the classification of
digital processes presented in Figure 1.

The components of the framework in Figure 1 are
defined next.

• Digital Infrastructure: Refers to computing assets and
tools that support digital engineering. The digital
infrastructure is to support company’s information
needs and related data. It could be programme or
domain-specific and integrate tools from different
domains.

• Life-cycle models: Various life-cycle models and the
related data and information needed by these models.

• Process models: Models integrating products, people,
and processes involved.

• Data and model ontology: This repository of arte-
facts is referred to as an Authoritative Source of Truth
(ASoT) as all stakeholders use the same data andmod-
els. The data models define how the data is stored
and accessed, while domain ontologies define generic
concepts and relationships in the domain that enables
sharing of data and knowledge. It is expected that
maintenance of data and models will be automated.
This way a change in one area of ASoT will propagate
to other areas.

• Operational data and models: Models that capture
relationships between individual models, define the
operational use of the system that enables analysis
of issues of interest, and manage the relationships
between the individual models.

• System data and models: Systemmodels and support-
ing data that span multiple engineering and business
domains.

• Discipline -specific data and models: A collection of
models and data applicable to a narrow domain.

The classification presented in Figure 1 is an effort
to systemise developments around digital engineering.
The fact that it has been developed by consensus
among experts representing industries, government, and
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Figure 1. Classification of digital processes in manufacturing (DEMF 2022). A five-layer block diagram. The lower four layers starting
from bottom up are: digital infrastructure, life-cycle models, process models, and data andmodel ontology. The top (fifth) layer contains
three elements, operational data and models, system data and models, discipline-specific data and models.

academia in an asset. The full value of the proposed clas-
sification awaits demonstration which could be accom-
plished by providing relevant content (e.g. models and
data) to the seven blocks in Figure 1. The next section
of this paper is to assess the status of predictive models in
digitalmanufacturing. Suchmodelswill gain prominence
in any manufacturing framework, including the DEMF
framework illustrated in Figure 1.

2. Predictive models in digital manufacturing

Predictive models are relatively new to manufacturing;
however, the number of publications on their applica-
tions is growing at a high rate. The topical coverage of
predictive modelling is not uniformly distributed, for
example, the process control area has been most widely
research. The origin of this distribution skewed towards
some manufacturing areas is likely due to: (i) the nature
of the application domain or (ii) the availability of histor-
ical data. It can be observed that many papers published
to date trace back to the same public data sets. The public
data is used for benchmarking algorithms and develop-
ment of models. Some domains of manufacturing are
either: (i) not naturally amenable for predictive mod-
elling or (ii) could not be suitable at all for applications
of such models. For example, the machine layout prob-
lem is usually considered deterministic and as such is not
a natural candidate for predictive modelling. This does
not exclude possibility of applying predictive modelling
to some phases of themachine layoutmodelling, e.g. data
generation.

To identify representative applications of predictive
modelling in manufacturing, a comprehensive analysis
of publications included in the following four digital
libraries, Science Direct, Informa, Springer Link, and

IEEE Xplore, has been performed. The four libraries are
likely to include majority of the content relevant to the
paper domain. Amongmany candidate areas considered,
the eight application areas listed in Table 1 have been
selected. These areas are of interest to manufacturing
researchers and practitioners.

It has been decided that an application area with at
least 3500 publications that appeared in 2021 across the
four libraries be analysed. The one-year total of 2021
publications is a good representation of the papers pub-
lished over longer time periods. It has been observed that
the number of papers published on topics in any of the
eight areas in Table 1 has been largely increasing every
year. The search of the four digital libraries has been per-
formed on the keywords included in the first column
of Table 1+ prediction+manufacturing. For example,
conditionmonitoring+ prediction+manufacturing. For
the two of the eight areas that include ‘prediction’ in their
names, this keyword was not repeated. Digitisation of
industry is progressing, and it offers data for predictive
models in manufacturing. The eight applications areas
are ranked in the last column of Table 1. Based on the
search performed, the process control area of manufac-
turing has been the most widely researched (Rank 1) and
the fault prediction area the least (Rank 8).

The eight applications of predictivemodelling inman-
ufacturing of Table 1 are illustrated with the recently
published papers.

• Condition monitoring

Wang et al. (2019) discussed a deep heterogenous
gated-recurrent-network for prediction of tool wear. Per-
formance of the proposed approach was demonstrated
in computational experiments. Trends in applications of
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Table 1. The number of 2021 publications included in four digital libraries.

Digital library

Application area Science Direct Informa Springer Link IEEE Xplore Total Overall rank

Condition monitoring 5254 3663 2622 364 11,903 6
Fault prediction 1928 632 825 448 3833 8
Process control 16,779 9365 6334 1092 33,570 1
Quality prediction 12,305 7666 4999 883 18,187 2
Production demand prediction 5779 4728 1990 107 12,604 5
Decision making 4888 5883 2856 249 13,876 4
Planning 6104 4920 2722 381 14,127 3
Scheduling 2311 1625 876 213 5025 7

deep learning to machine health monitoring were pre-
sented. A methodology and model for identification of
assembly stations of inferior performance was proposed
in Verna et al. (2022). This in turn allowed quality engi-
neers to determine root causes of the production prob-
lems.

• Fault prediction

A predictivemaintenancemodel involving integration
of generative adversarial and long-short-term memory
networks was offered in Liu et al. (2021). This inte-
gration eliminated the problem of vanishing gradients
of the long-short-term memory (LSTM) network and
the mode collapse of the generative adversarial network,
while enabling self-detection of data anomalies. A hybrid
sparse convolutional neural network for prediction of
defects in components produced in a laser-based pow-
der bed fusion process was developed by Zhang and Zhao
(2021). To improve themodel performance, a generalised
convolution operation was applied to a sparse matrix.

• Process control

Liu et al. (2022) discussed a model for prediction of
production progress in a make-to-order environment.
Performance of the developed neural-networkmodelwas
validated against eight algorithms.

• Quality prediction

Machine learning offers a great potential in prediction
of product quality. Tercan and Meisen (2022) reviewed
the papers on predictive quality in manufacturing pub-
lished in the 2012–2021 period. Challenges for predictive
quality and future research were provided.

• Product demand prediction

A neural-network model to predict the demand of
printed circuit boards was discussed in Hu (2022). The
paper emphasised estimation of the demand intervals.

Computational analysis has demonstrated favourable
performance characteristics of the grey predictionmodel.

• Decision making

Data-driven technologies for decision-making in
intelligent manufacturing were analysed in Li, Chen, and
Shang (2022). An intelligent decision-making framework
was proposed.

• Planning

Oluyisola et al. (2022) offered a methodology for
design and development of smart production planning
and control systems. The methodology applied machine
learning and data analytics to data from different sources
as well as utilised prior production planning knowledge.
A case study was presented.

• Scheduling

Serrano-Ruiz, Mula, and Poler (2022) developed a
model for smart manufacturing scheduling. The model
utilised machine learning to increase flexibility, enhance
rescheduling capability, and increase autonomy in man-
ufacturing.

Figure 2 shows an example manufacturing system
involving processes such as subtractive manufacturing,
additive manufacturing, assembly, quality control, and
production control and scheduling. The eight applica-
tions and their ranks from Table 1 are listed next to the
corresponding processes in Figure 2.

The coverage of the predictive modelling in manufac-
turing is likely to grow in time.

For a more focused characterisation of the 2021 pub-
lications, an additional search of the four digital libraries
considered in Table 1 has been performed. The first two
keywords used in the search reported in Table 1 were
retained, while the last keyword ‘manufacturing’ has been
replaced with ‘digital manufacturing’. This search has
reduced the number of publications, e.g. the search of
the Science Direct library on ‘condition monitoring’ and
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Figure 2. A manufacturing system with basic processes. A process like diagram that starts with design product as an input, followed
by rawmaterials, then two parallel blocks (additive process and subtractive process), followed by quality control, assembly process, and
another quality control block. The diagram ends with manufactured product.

‘prediction’ and ‘digital manufacturing’ has resulted in
1685 publications vs. 5254 publications in the original
search reported in Table 1. The total of 1685 publica-
tions included 274 review articles, 1209 research arti-
cles, 18 encyclopaedia chapters, and 184 book chapters.
All review papers identified in the search of the four
digital libraries have captured the progress and identi-
fied challenges in the eight application areas of Table 1
usually in the period of 5–10 years. A deep analysis of
the 2021 review papers on predictive modelling in dig-
ital manufacturing across the eight application areas of
Table 1 has been conducted. The detailed content anal-
ysis has resulted in eight observations and three chal-
lenges discussed next. These observations offer two ben-
efits: (i) assess the past developments in digital man-
ufacturing and (ii) serve as an inspiration for future
research.

Observation 1: The research on predictive models in
manufacturing is limited in scope and unevenly dis-
tributed.

Comment: The scope of modelling is largely dictated
by the data available for research. The totals in Table 1
vary across different application areas.

Observation 2: Predictivemodelling inmanufacturing
is fragmented.

Comment: The predictive models are usually devel-
oped in silos. It is seldom that integration of thesemodels

with other predictive models and application environ-
ments is discussed. The assignment of unrelated appli-
cation areas to different process in Figure 2 supports this
observation. Models integrating any of the eight different
applications areas could not be identified in the literature
surveyed.

Observation 3: The use of industry-collected data in
the published research is limited, given the total number
of papers published.

Comment: Papers tend to use the previously published
public data sets. While applying benchmark data sets for
comparative analysis is welcome, the use of the same data
sets at the outset ofmany different research projects is not
likely to support creativity of manufacturing research in
predictive modelling.

Observation 4: The diversity of data available to the
manufacturing research community is limited.

Comment: Based on the origin of data sets, the
research papers fall into the following four categories: (i)
public data sets, (ii) secondary use of industrial data sets
supplemented with public data, (iii) data generated from
designed experiments, and (iv) industrial data sets only.
It is seldom that the published research utilises industrial
data from large-scale experiments specific to the data sci-
ence project. The use of data generated for purposes other
than modelling (secondary use of data) prevails in the
manufacturing literature.
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Observation 5: High-impact industrial use cases in
predictive modelling have limited visibility in the liter-
ature.

Comment: This is a complex issue as the research com-
munity has a limited control over industry-generated
data and applications. Any progress in this domainwould
likely enhance research and accelerate development of
new applications.

The analysis of the literature has revealed modelling
challenges that are presented in the next section. These
challenges have led to additional observations that are
also discussed.

3. Modelling challenges

Predictive modelling is a cornerstone of digital manu-
facturing. Data-derived models have gained a preferred
status over statistics and physics-based models used in
manufacturing since the first industrial revolution. Mod-
elling from data faces the following issues:

• Model complexity
• Model interpretability
• Model reuse

3.1. Model complexity

Machine learning algorithms have taken the central stage
in modelling. The developed models largely involve dif-
ferent classes of machine learning algorithms, from deci-
sion tree and classical neural networks to generative
adversarial networks and deep learning algorithms. It is
generally agreed that the industry prefers simple models
over complex ones. The two well-known theorems pre-
sented next set a stage for the analysis of performance of
models and their complexity.

3.1.1. No free lunch theorem (Wolpert andMacready
1995;Wolpert 1996)
Given a finite set V and a finite set S of real num-
bers, assume that function f : V→S is randomly selected
according to uniform distribution of the set SVof all pos-
sible functions fromV to S. For the problemof optimising
f over the set V, no algorithm performs better than the
blind search. The theorem implies thatwhen all functions
f are equally likely to be chosen, the probability of observ-
ing an arbitrary sequence of m values in optimisation
does not depend on the algorithm selected. An instance
of function f could be a data-derived model. However,
the theorem does not mention any limitations related
to finding the best learning algorithm for a particular
problem instance.

3.1.2. Universal approximation theorem (Hornik,
Stinchcombe, andWhite 1989)
Any continuous function defined in an arbitrary compact
subspace of Rn can be approximated arbitrarily well with
a three-layer perceptron. This theorem seems to imply
that:

• A multi-layer perceptron with one hidden layer suf-
fices in modelling.

• There is no need to consider perceptrons with more
than one hidden layer.

However, the theorem does not mention anything
about the number of hidden neurons leading to a desired
approximation accuracy. In particular:

• Depending on the function to be approximated, many
neurons may be needed.

• A network with more than one hidden layer, each
having lower number of neurons, may produce the
same approximation accuracy as the one hidden layer
network.

Garouani et al. (2022) discussed the problem of selec-
tion and configuration of AI models. The problem was
addressed by a software platform discussed in the paper.
The platform provides insights into the algorithms and
models.

Observation 6: Predictive modelling alternatives in
manufacturing are limited.

Comment: The results published in the literature usu-
ally emphasise accuracy of predictive models. Consider-
ation of alternatives accounting for models of different
complexity, data availability, and different data streams
need attention. For example, a model that is less accu-
rate but more robust and functions with more than one
data stream may be preferred in some applications over
a highly accurate model supported by data of uncertain
availability.

3.2. Model interpretability

The notion of model interpretability used in artificial
intelligence implies that a model is understandable to a
user. In more general sense, the term eXplainable Artifi-
cial Intelligence (XAI) is used to denote models that can
be explained.

Ahmed, Jeon, and Piccialli (2022) surveyed the
eXplainable AI methods and discussed their applications
in the context of Industry 4.0. Challenges, opportuni-
ties, and research directions pertinent to XAI were out-
lined. Kinkel, Baumgartner, and Cherubini (2022) stated



INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 7

that the focus of AI research has been on AI technolo-
gies rather than factors enabling its adoption in industry.
Based on a survey of 655 industrial professionals, the
authors identified barriers to industry-wide implemen-
tation of AI solutions ranging from a company size to
the level of research and digital skills. Minh et al. (2021)
reviewed and categorised the existing XAI approaches
into: (i) pre-modelling explainability, (ii) interpretable
model, and (iii) post-modelling explainability. In addi-
tion, the terminology surrounding explainability was
offered. The emerging concepts in interpretability of
deep learning models were outlined. The pre-modelling
explainability refers to data processing tasks preceding
machine learning. It aims at getting insights into the
data, e.g. statistical data analysis, data transformation,
data visualisation, and storytelling (Minh et al. 2021).
An interpretable model is one that can be easily inter-
preted by a user, usually because it is explicit. Exam-
ples of such models include, liner and logistic regression
models, rule-based, decision tree, and k-nearest neigh-
bours models. The post-modelling explainability applies
to cases where a model does not meet the interpretabil-
ity requirements. Here, a model-agnostic or model-
specific approach can be applied (Minh et al. 2021).
Both approaches may involve techniques, such as textual
justification, simplification, feature relevance, and visu-
alisation. Deep learning models offer a separate set of
interpretability challenges.

Based on the level of explainability, Doran, Schulz, and
Besold (2017) categorised the XAI models into three cat-
egories: (i) opaque models, (ii) interpretable models, and
(ii) comprehensible models. For an opaque model, a user
does not get any insights on how the model output is
produced for a given input, e.g. a model is derived by
a proprietary algorithm or a neural network. If a user
can analyse the relationship between the model input
and output, the model is interpretable, e.g. a regression
model. A comprehensible model, in addition to gen-
erating an output, produces symbols (e.g. rules, visual
symbols) allowing a user to relate properties of the input
to the output. Depending on the type of these sym-
bols, models can be comprehensible to a different degree.
BarredoArrieta et al. (2020) summarised and categorised
the literature on explainability in machine learning. The
transparency level of different machine learning mod-
els, such as linear regression, decision trees, k-nearest
neighbours, rule-based, generalised additive models, and
Bayesian models was illustrated graphically. In addition,
the machine learning models were classified based on
their level of explainability.

Some of the most recent applications of the concept of
eXplainable Artificial Intelligence (XAI) in manufactur-
ing are illustrated next.

3.2.1. Classification of fibre layup defects in
manufacturing of compositematerials
Meister et al. (2021) applied 20 published XAI meth-
ods to classify fibre layup defects with a neural network.
The neural activations and robustness of a classifier were
analysed for unknown and manipulated input data. The
study has determined that the smoothed integrated gra-
dients and DeepSHAP methods were most suitable for
visualisation.

3.2.2. Classification of welds
Goldman et al. (2021) applied two XAI approaches to
classify the quality of welds of ultrasonic battery tabs. A
heatmap visualised the class activation in several colours.
A contrastive gradient-based saliency maps were used to
express robustness of the classifier.

3.2.3. Process prediction
The challenges and opportunities in applying XAI to
process predictions in a smart Lego-factory were dis-
cussed in Rehse, Mehdiyev, and Fettke (2019). A post-
hoc explanation approach was applied to a deep learning
model predicting process outcomes. The XAI approach
was to enhance trust of domain experts in the prediction
model.

3.2.4. Predictivemaintenance
Upasane et al. (2021) introduced a type-2 fuzzy logic
system optimised by the big-bang big-crunch algorithm
enhancing interpretability of a multi-layer percep-
tron model. Performance of the XAI approach was
compared with that of the multi-layer perceptron
model.

3.2.5. Manufacturing cost estimation
The concept of eXplainable AI as a process of predict-
ing manufacturing cost was presented in Yoo and Kang
(2021). The process involved three phases, data collec-
tion, exploration of deep learning architecture, and visual
explanation of the results.

3.2.6. XMANAI case studies (XMANAI 2020)
Two industrial cases of explainable AI were presented in
Lampathaki et al. (2021). The first case study involved
management and analysis of real-time data from cor-
porate systems, maintenance, and tooling systems in an
automotive engine plant, while the second one involved
forecasting models. The authors applied the XMANAI
approach (www.ai4manufacturing.eu) designed to make
the manufacturing value chain with ‘glass box’ models
explainable.

Observation 7: The progress in eXplainable Artificial
Intelligence inmanufacturing conditions the scale, scope,

http://www.ai4manufacturing.eu
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and speed of industry-wide deployment of predictive
modelling.

Comment: The industry is at ease with using soft-
ware solutions ranging frompayroll systems to enterprise
resource planning. Many of these software systems per-
form relatively simple operations at a massive scale. The
logic behind these operations is well understood. Predic-
tive models have different characteristics than the tra-
ditional software solutions. Though large data sets are
usually needed to develop predictive models, their exe-
cution may involve small volume of data, e.g. the values
of the input parameters. Yet, the innerworkings of the
model cannot be easily explained, and therefore the eXAI
solutions are needed.

3.3. Model reuse

When a new technology or a tool emerges, the users
tend to compare the new to the old. The fact that
physics has served as a basis of modelling in manu-
facturing since its very beginnings, any new model is
usually compared to a physics-based model. The bene-
fits of the data-derived models surpassing those of the
physics-based models (e.g. large scope, high accuracy)
come at the cost of being application specific, which
makes it difficult to deploy them the way of the physics-
derived models are. A physics-based model can be used
in any application that includes the phenomenon cap-
tured by this model. The data-derived models are appli-
cation specific and therefore it would be highly unusual to
fully match a previously developed model with an unre-
lated application. The data science community is working
towards alleviating this problem, e.g. research in transfer
learning.

Transfer learning aims at the use of a model devel-
oped in one application scenario in another one. This is
analogous to humans applying knowledge to solve differ-
ent problems using the same base knowledge. Progress in
transfer learning is needed to accelerate deployment of
data science in many domains, including manufacturing.
Having an initial data-drivenmodel that could be applied
without following the usual model development process
would be a great benefit. Performance of such a model
could be improved over time as the application-specific
data is collected.

Transfer learning was introduced in Lazaric (2012).
Based on the application domain setting, three types of
transfer learning were defined: (i) transfer from a source
task to another target task within the same domain, (ii)
transfer from different source tasks to another target task
within the same domain, and (iii) transfer from a source
task to a target task in a different domain. Three cat-
egories of knowledge transfer were listed: (i) instance

transfer, (ii) representation transfer, and (iii) parame-
ter transfer. Computational intelligence algorithms offer
a promising contribution to transfer learning. Lu et al.
(2015) surveyed applications of computational intelli-
gence in transfer learning. The computational intelli-
gence techniques were grouped in three transfer-learning
categories: (i) neural network, (ii) Bayes and fuzzy logic,
and (iii) genetic algorithm category.

Transfer learning of convolutional neural networks
begins to dominate the current literature. An interesting
concept of broad transfer learning was discussed in Liu
et al. (2021).

Illustrative applications of transfer learning in manu-
facturing are discussed next.

3.3.1. Aluminium processing
The results of a study demonstrating potential deploy-
ment of transfer learning in manufacturing aluminium
cans were presented Giannetti and Essien (2021). Two
different transfer-learning strategies, weight reuse and
fine-tuning, were considered for classification of the
speed of nine bodymaker machines in a manufacturing
plant.

3.3.2. Defect classification in semiconductor
industry
Transfer learning of a convolutional neural network in
the presence of data with unreliable labels or labelled data
of unrelated tasks was discussed by Imoto et al. (2019).
The proposed method provided significant savings in
defect classification at a semiconductor fabrication facil-
ity.

3.3.3. Bearing life-time prediction
A multi-stage transfer-learning method for transfer of
vibration-based fault diagnostics capabilities to a new
working environment of a convolutional neural network
was proposed by Zhou et al. (2020). A training strategy
involving pre-training and fine-tuning was designed to
transfer the weights of a pre-trained model to new diag-
nostics tasks. The proposed method was validated on
three bearing fault data from three different applications.

3.3.4. Tool wear prediction
A laboratory-generated data set was applied by Sun et al.
(2021) to predict tool wear in a milling process. The ini-
tially collected 200 images were enhanced to 3200 images
and used for training, validation, and testing. The model
robustness and accuracy were validated in a computa-
tional study.
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3.3.5. Time-to-failure prediction
Liu et al. (2021) proposed a deep transfer approach to
predict the time-to-failure in an ion mill etching pro-
cess. At the first stage, a time-series data was used to
develop a model. At the second stage, the deep model
of the first stage was fine-tuned with a low volume of
data from the previously unseen fault modes. The train-
ing and accuracy advantages of the model were validated
in computational experiments.

Observation 8: The progress in transfer learning
impacts the scale, scope, and speed of industry-wide
deployment of predictive modelling in manufacturing.

Comment: The software deployed across industries is
largely generic, with limited or no customisation needed
for a specific application. Any predictive model to be
deployed at this time is application specific (customised).
While the traditional software can be used across differ-
ent applications and companies, predictive models can-
not. It is anticipated that transfer learningwill allow reuse
of predictive models across different applications.

4. Conclusion

A concise review of the recent developments in digi-
tal manufacturing was presented. Based on the analysis
of a large number of recent papers from four digital
libraries, eight representative application areas of pre-
dictive modelling in manufacturing were identified and
ranked. The ranking demonstrated that some application
areas have received noticeable attention by the manufac-
turing research community, while other domains await
research. The predictive modelling areas were mapped
against the basic processes of manufacturing systems.
The key barriers to further developments were identi-
fied. The progress made to date was illustrated with the
recently published papers. A deep analysis of the selected
survey papers has provided results that could not be
accomplished with the bibliometric tools. The analysis
results have been captured in the form of three challenges
and eight observations. The challenges involve model
complexity, model interpretability, and model reuse.
These challenges await further research. The attempts to
tackle them were illustrated with the published papers.
The eight observations formed could guide the future
research in predictive modelling. They may also serve as
elements of a roadmap for digitisation of themanufactur-
ing industry. The concepts highlighted in this paper are
synergistic with an example framework for classification
of digital engineering processes and applications.
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