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Abstract. A power transformer is a critical piece of equipment in a power plant for distributing 
electricity, and it experiences thermal and electrical stresses during operation. Dissolved gas 
analysis (DGA) remains one of the most effective techniques to monitor the health of oil-filled 
transformers. Some traditional approaches for interpreting DGAs have been introduced. 
Occasionally, such approaches leave the state of the transformer uncategorized. This study 
proposed data-driven approaches for a fault diagnosis system based on DGA data using support 
vector machine (SVM). SVM is known for its robustness, good generalization capability, and unique 
global optimum solutions, particularly when data is limited. Backpropagation neural networks 
(BPNN) and extreme learning machine-radial basis function (ELM-RBF), a recent Neural Networks 
(NN)-based method with extremely fast computation time, were compared to SVM. An advanced 
technique to overcome the imbalanced data and synthetic minority oversampling technique 
(SMOTE) was proposed to investigate the effect on classifier performance. The model was trained 
and tested using IEC TC 10 databases and transformer DGA monitoring data of a thermal power 
plant in Jakarta. The results indicated that SVM displayed the best performance compared to ELM-
RBF and BPNN. It demonstrated extremely high accuracy, while still maintaining fast computation 
time for all stages in the proposed multistage fault diagnosis system. 
 
Keywords: Condition monitoring; Dissolved gas analysis; Fault diagnosis; Support vector 

machine; Transformer 
 

1. Introduction 

Thermal power plants remain main electricity providers; however, most of them are 
highly aged. According to Ulum et al. (2017), plant equipment, which degrades over time, 
leads to electricity production loss. Therefore, the industrial process measurements are 
imperative to monitor and assure the quality and safety in operations (Kusiak and Song, 
2009). Those measurements are the bases to determine the maintenance activities. Such 
maintenance will raise the reliability and availability of equipment (Pariaman et al., 2017), 
including the reliability and availability of power transformers, one of the key pieces of 
equipment  in a  power distributing system.   Despite  the fact  that  faults  in a transformer  
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occur infrequently, once they do occur, their impact is significant in terms of safety, 
downtime, and equipment loss (Hernandez and Labib, 2017). DGA has been known to be a 
popular, sensitive, and reliable technique to monitor the insulation condition of 
transformers (Saha, 2003; Chakravorti et al., 2013). However, conventional DGA 
interpretation methods include certain drawbacks in terms of accuracy and uncertainty 
(Shintemirov et al., 2009; Ghoneim and Taha, 2016). These approaches require the manual 
interpretation of experts, and some measurements may be unidentifiable when using any 
interpretation method (Lin et al., 1993; Yang et al., 2009; Abu-Siada and Islam, 2012).  

Faults should be diagnosed accurately and in a timely manner, since ignoring them 
degrades the safety and security of the process, and it could lead to catastrophic failures 
and loss of material and even life (Gao et al., 2015). Therefore, machine learning methods 
have been recently applied in studies for transformer fault detection and diagnosis (FDD) 
using DGA data. Support vector machine (SVM) has become an increasingly popular 
technique in machine learning. SVM is known for its robustness, good generalization 
capability, and unique global optimum solution. Shin and Cho (2006) explained that its good 
generalization capability was due to structural risk minimization, which is employed by 
SVM, rather than empirical risk minimization, as in NN. SVM also performs well with small 
samples and high dimension data, while still maintaining short computational times (Lv et 
al., 2005; Bacha et al., 2012; Sahri and Yusof, 2015; Souza and Ramachandran, 2016). Some 
studies have compared SVM with other methods, such as kNN, ANN (Shintemirov et al., 
2009), the expert system (Lv et al., 2005), fuzzy logic, multilayer perceptron (MLP), and 
radial basis function neural networks (RBFNN) (Fei et al., 2009; Bacha et al. 2012). These 
studies found that SVM performed better. Ghoneim and Taha (2016) conducted a fault 
diagnosis study in the same area, but they only applied limit rules to categorize faults. 

In reality, the availability of fault data is usually significantly lower than the normal 
operating condition (NOC). This situation may lead to a decrease in classifier performance. 
Fault diagnosis focuses on how to detect a fault, the minority class. Sahri and Yusof (2015) 
tested some scenarios of input features without considering how to handle imbalanced 
data. Only a few studies have considered this imbalanced data in FDD. Chawla et al. (2002) 
proposed the use of the synthetic minority oversampling technique (SMOTE) to overcome 
the imbalanced data problem by creating new data through an interpolation process. No 
previous studies have applied SMOTE in the case of transformers for fault diagnosis. 

This study aims to develop an accurate and fast transformer fault diagnosis system 
from DGA data using SVM and SMOTE for data balancing. Other recent classifier methods, 
extreme learning machine-radial basis function (ELM-RBF), which is known for its 
extremely fast computation time, is applied. The high computation of ELM-RBF, while still 
maintains good accuracy, will result in a number advantages, such as fast fault diagnosis 
and lower hardware investment costs.  In addition, the classical approach of the NN-based 
technique, backpropagation neural networks (BPNN), was also tested. He and Kusiak 
(2017) employed SVM, Multi-layer perceptron (MLP) and ELM based methods, which 
performed satisfactorily, to predict wind power. This study contributes to the possibility of 
lengthening transformer life by proposing fault diagnosis systems using aforementioned 
data-driven approaches. The proposed models were trained and tested using the fault and 
NOC DGA data from IEC TC 10 and NOC DGA data from a thermal power plant in Jakarta. 
Ghoneim and Taha (2016) and Sahri and Yusof (2015) used IEC TC 10 as a data source as 
well. Only Ghoneim and Taha (2016) and Sahri and Yusof (2015) used real data, whereas 
Bacha et al. (2012) used simulated data from the Tunisian company of Electricity and Gas.   

The remainder of this article is organized as follows. Section 2 describes the study 
methods used in this research, from the proposed research framework to the methods 
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applied. The following section, Section 3, elaborates the results and discusses the fault 
diagnosis based on certain performance measures. Some concluding remarks and areas of 
future research are provided in Section 4. 
 
2. Methods 

2.1.  DGA as Condition Monitoring for Transformer  
DGA samples are frequently used to analyze the dissolved gas in insulation oil. DGA data of 
a transformer provides insight into the electrical and thermal stresses of oil-immersed 
power transformers. Internal transformer faults are electrical and thermal. Owing to 
electrical and thermal stresses, oil and paper decomposition occurs. Both act as insulation 
for transformers. These two stresses can cause a breakdown of insulating material and 
release gaseous decomposition products (Zhang et al., 1996). Paper decomposition 
produces carbon monoxide (CO) and carbon dioxide (CO2), both of which act as major 
factors in cellulose degradation. Griffin (1988) described the fault types related to these 
gases. Oil decomposition results in hydrogen (H2), methane (CH4), acetylene (C2H2), 
ethylene (C2H4), and ethane (C2H6). CH4 and C2H6 are related to low temperature oil 
breakdown, whereas C2H4 is related to high temperature oil breakdown. C2H2 is related to 
arcing, H2 is related to corona, whereas CO and CO2 are related to cellulose insulation 
breakdown, which are produced from paper decomposition. Based on the type and amount 
of gas, the fault type can be determined (Duval, 1989). The fault types used in the proposed 
research framework are based on classification in IEC 60599, which is simplified into five 
categories: partial discharge, discharges of low energy (D1), discharges of high energy (D2), 
thermal fault below 700oC and thermal fault above 700oC (Duval and dePablo, 2001). 

2.2.  Multistage Fault Diagnosis System 
 An FDD system, also known as a fault diagnosis system, is basically a classification 
problem, which consists of majority and minority data classes. An SVM is a binary type of 
classification; therefore, a nested (multistage) classification has been proposed for a fault 
diagnosis system. Previous studies, which employed SVM, have adopted the multistage fault 
diagnosis system (Dong et al., 2004; Bacha et al., 2012; Souza and Ramachandran, 2016, 
Dhini et al., 2018).  

 

Figure 1 The proposed data-driven Fault Diagnosis system 
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Figure 1 shows the structure of the proposed data-driven fault diagnosis system, which is 
the continuation  of previous works in Dhini et al. (2018). It is modified from the fault 
diagnostic model of Bacha et al. (2012). The fault detection and diagnosis 1 (FDD1) stage 
applies the fault-detection process by classifying the fault data from the NOC. The 
subsequent stages are the fault diagnosis process. The difference with Bacha et al. (2012) 
lies in the FDD3 stage, which classifies PD from other discharges faults, which are based on 
the similarity of certain fault types and discharges of high and low energy. Firstly, Bacha et 
al. (2012) separated discharges of high energy from discharges of low energy and partial 
discharges, whereas this study separated partial discharges from other types of discharge 
faults. Based on data availability, this study also classified thermal fault below 700oC from 
thermal fault above 700oC. 

2.3.  DGA Data Description 
The proposed fault diagnosis system was tested on 266 DGA data, which consisted of 

149 NOC and 117 fault data. Fifty NOC and 117 fault data originated from IEC TC 10 
databases, which were collected from Duval and dePablo (2001). In addition, 99 NOC data 
were obtained from the DGA monitoring of a transformer in a government-owned steam 
power plant in Jakarta. The fault data consisted of five classes: nine partial discharges (PD), 
26 discharges of low energy (D1), 48 discharges of high energy (D2), 16 thermal faults 
<700oC (T1 and T2) and 18 thermal faults >700oC (T3) data. The training and testing data 
were constructed using a hold out ratio of 80:20. Therefore, 209 training data and 57 testing 
data were included. The following seven types of dissolved gases were used as inputs. i.e.: 
hydrogen (H2), methane (CH4), acetylene (C2H2), ethylene (C2H4), ethane (C2H6), carbon 
monoxide (CO), and carbon dioxide (CO2).  

2.4.  Single Minority Oversampling Technique (SMOTE) for Data Balancing  
Subsequently, SMOTE was applied on training data for data balancing. Sun (2017) 

explained the process in SMOTE, where the synthetic data points are generated. First, the 
difference between the feature vector of the data point under consideration (xi) and its K 
nearest neighbours (xzi) should be calculated. Then, the difference is multiplied by a random 
number (λ) between 0 and 1, which is then added to the data point under consideration (xi). 
This process results in the selection of a random point (xnew) along the line segment between 
two specific data points (xi and xzi). Equation 1 describes the process of synthetic data 
generation:  

                  𝑥𝑛𝑒𝑤 = 𝑥𝑖 + 𝜆 × (𝑥𝑧𝑖 − 𝑥𝑖)                       (1) 

There are four types of SMOTE: regular, borderline SMOTE1, borderline SMOTE2, and 
SVM (Chawla et al., 2002; Han et al., 2005; Tang et al., 2009). This study applied these four 
types of SMOTE, and the process was conducted only on the training data. The regular 
algorithm randomly picks all possible xi available when instantiating a SMOTE object. The 
borderline versions over-sample only minority classes around the borderline, whereas the 
SVM version uses the support vectors to create a new sample (Han et al., 2005; API, 2014). 

Borderline SMOTE1 and SMOTE2 classify each data point xi as the following: (1) noise, 
when all the nearest neighbours come from a different class than the one of xi; (2) danger, 
when at least half of the nearest neighbours are from a different class than xi; or (3) safe, 
when most of the nearest neighbours are from the same class as xi. When instantiating a 
SMOTE object, borderline SMOTE1 and SMOTE2 will use the data points in danger to 
generate new data points. In borderline SMOTE1, one of the K nearest neighbours xzi will 
belong to a class different from the one of data point xi. In contrast, borderline SMOTE2 will 
consider a neighbor xzi, which can be from any class. Borderline SMOTE2 will not only 
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generate synthetic data points from each example in danger and its minority nearest 
neighbours but also does the same from its nearest majority neighbour. 

2.5. Support Vector Machine (SVM)  
SVM, which was first introduced by Vapnik during the 1990s, is a classifier based on a 

linear discriminant function, and it has become popular during the past few decades. The 
objective of an SVM is to find a hyperplane that maximizes the margin between the 
separated data. Figure 2 illustrates a hyperplane that separates two classes. The closest 
circles and triangles to the margin are the support vectors. The remaining are the training 
data. To construct an optimal hyperplane for classification, a non-linear function, namely, a 
kernel (φ), is selected to map the dimension transformation (Dong et al. 2004). The input 
vector, x, may be transformed into a higher dimensional characteristic space. In this study, 
a polynomial kernel as in Equation 2 is applied:  

𝐾(𝑥, 𝑢) = (𝑎𝑥𝑇𝑢 + 𝐶)𝑞 , 𝑞 > 0                        
(2) 

An SVM was developed from a linear classification problem. For a non-linear problem, 
a relaxation parameter,   0, is introduced. The problem objective function is then the 
following: 

min
1

2
‖𝑤‖2 + 𝐶 ∑ 

𝑖
𝑁
𝑖=1               (3) 

subject to the following constraints: 

𝑦𝑖[𝑤𝑖
𝑇𝑥𝑖 + 𝑏] ≥ 1 − 

𝑖
, 𝑖 = 1,2, … , 𝑁           (4) 


𝑖

≥ 0, 𝑖 = 1,2, … , 𝑁             (5) 

where C is a factor, which should be a compromise between the classification accuracy and 
algorithm complexity and is often determined through a cross-validation.  

 
Figure 2 Classification by maximized hyperplane in SVM 

 
The optimal classification hyperplane is constructed to solve the quadratic 

programming problem and to find only the minimum solution, which is solved using the 
minimum point of Lagrange’s function as follows: 

   ℒ(𝑤, , b, α) =
1

2
𝑤𝑇𝑤 + 𝐶 ∑ 

𝑖
+ ∑ α𝑖[1 − 

𝑖
− 𝑦𝑖(𝑤𝑖

𝑇𝑥𝑖 + 𝑏)]𝑁
𝑖=1

𝑁
𝑖=1             (6)                           

where w and b are primal variables, and αi is a Lagrange multiplier, in which αi  0. 
According to the Karush-Kuhn-Tucker (KKT) theorem, the classification threshold value b 
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may be obtained using the corresponding data, which satisfies the following condition: 
0<αi<C. The subsequent Equation 7 is for decision making, based on the optimal 
classification hyperplane. 

𝑓(𝑥) = 𝑠𝑔𝑛(𝑤𝑥 + 𝑏)                         (7) 

One-versus-the-rest or one-against-all (OAA) is the earliest and most common extension of 
an SVM for a multiclass problem. A total of M binary SVM classifiers will be created, where 
M is also the number of classes. This study applies the OAA approach to solve the multiclass 
problems using an SVM. 

2.6. Extreme Learning Machine-Radial Basis Function (ELM-RBF)  
 The seminal work by Broomhead and Lowe (1988) proved that RBF networks 
corresponded with the radial functions in a single-layer network. The network architecture 
consists of a three-layered feedforward NN. The first layer (input layer) distributes the 
input signal linearly. The second layer (hidden layer) is non-linear and employs radial basis 
functions, and the third layer (output layer) linearly combines the radial basis function 
outputs. The commonly applied radial basis function is Gaussian. A bias neuron is added to 
improve the accuracy of the model. Traditionally, the tap weights between the hidden and 
output layers are adjusted during learning using the training data. One of the common 
techniques employed to optimize the weights is a gradient descent algorithm, which 
converges extremely slowly if the learning rate is too low. Thus, an ELM was proposed to 
overcome this weakness. In a single-hidden-layer feedforward NN, ELM randomly chooses 
the input weight, and therefore the hidden biases of the neurons analytically determine the 
output weights (Huang and Siew, 2005). Moreover, Huang and Siew (2005) claimed that 
the use of an ELM resulted in better generalization and an extremely high learning speed.  

The ELM-RBF randomly generates the kernel centers and the impact widths of the RBF 
kernels, and it analytically calculates the output weights. As determined by Huang and Siew 
(2005), (xi,yi), in which xi = [xi1,xi2,…,xin]T ϵ Rn and ti = [ti1,ti2,…,tim]T ϵ Rm, RBFs with Ñ kernels 
can be mathematically modeled as follows: 

∑ 𝛽𝑖∅𝑖(𝑥𝑗) = 𝑜𝑗,    𝑗 = 1, … , 𝑁Ñ
𝑖=1                             (8) 

where βi = [ βi1, βi2, …, βik]T is the weight vector connecting kernel i and the output neurons, 
and ∅𝑖  (x) is the output of kernel i. In addition, μi = [μi1, μi2, …, μin]T is the center of kernel i, 
σi is the impact width, and ∅ is the radially symmetric kernel function; in addition, it is 
assumed that ∅𝑖  (x) is a non-linear bounded integral and is always nearly continuous:  

∑ 𝛽𝑖∅𝑖(𝜇𝑖 , 𝜎𝑖, 𝑥𝑗
Ñ
𝑖=1 ) = 𝑡𝑗, 𝑗 = 1, … , 𝑁.           (9) 

𝐻𝛽 = 𝑌               (10) 

In short, as in Equation 10, where H is the hidden-layer output matrix of the RBF network. 
Column i of H is the output of kernel i with respect to inputs x1, x2, …, xN. However, because 
Ñ ≠ N (the number of kernels is less than the number of training samples, Ñ << N), H is a 
non-square matrix, and βi = (i = 1, 2, …, Ñ) may not exist, such that Hβ = T. Therefore, the 
unique smallest-norm least-squares solution �̂� of the above linear system is  

�̂� = 𝐻+𝑇         (11) 

where H+ denotes the Moore-Penrose generalized inverse. 
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3. Results and Discussion  

3.1.  Accuracy Comparison of SMOTE types  
Table 1 summarizes the average results of the accuracy classification in each stage. The 

numbers shown are the average of ten iterations for each SMOTE type. The SMOTE program 
was run on Python 2.7. The training and testing data using any SMOTE types resulted in 
similar accuracy from FDD1 to FDD5. However, borderline SMOTE1 had the lowest 
standard deviation of training data and the highest overall accuracy (81.6%). However, the 
p-value of the one-way ANOVA test was 0.996, which means the differences among the 
various SMOTE approaches were non-significant, Borderline SMOTE1 still exhibited better 
performance compared to the others. Therefore, training data resulting from borderline 
SMOTE 1 were used in the next stage of fault classification.  

3.2.  Comparison of Classification Algorithms: SVM, ELM-RBF and BPNN  
After data balancing with SMOTE, the fault classification algorithm SVM was conducted. 

The kernel type used was a polynomial (order 3) as in Equation 2, and the optimization 
problem was solved using quadratic programming (QP). For comparison, ELM-RBF and 
BPNN were employed. For clustering data in the hidden layer, RBF-type approaches were 
introduced, that is, a self-organizing map (SOM) and k-means. For ELM-RBF (SOM), the 
number of clusters selected ranged from 15 to 30, whereas for ELM-RBF (Kmeans), 5 to 10 
hidden neurons were applied. The BPNN was run using the following setting criteria: (1) a 
maximum iteration of 100; (2) 34 hidden neurons; (3) alpha = 0.1; (4) momentum = 0.3; 
and (5) a sigmoid activation function. The classification programs were run on MATLAB 
R2017b. The accuracy at each stage, overall accuracy, and standard deviations are 
presented in Table 2. Both ELM-RBF and BPNN were run ten times, and the results were 
averaged. 

 
Table 1 Comparison of accuracy and standard deviation using different SMOTE types 

  

SMOTE Types 

Regular Borderline SMOTE1 Borderline SMOTE2 SVM 

Training Testing Training Testing Training Testing Training Testing 

FDD1 86.60% 82.46% 86.12% 82.46% 86.12% 82.46% 87.56% 80.70% 
FDD2 94.51% 73.08% 93.41% 80.77% 94.51% 73.08% 95.60% 76.92% 
FDD3 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
FDD4 92.31% 75.00% 92.31% 75.00% 92.31% 75.00% 92.31% 87.50% 
FDD5 86.21% 68.75% 86.21% 62.50% 81.03% 68.75% 86.21% 62.50% 
Std Dev 0.06 0.12 0.06 0.14 0.07 0.12 0.06 0.14 
OverallAcc   80.80%   81.60%   80.80%   80.80% 

Table 2 Accuracy Results of SVM, ELM-RBF and BPNN 

  

No SMOTE SMOTE - BorderlineSMOTE1 

SVM SVM ELM-RBF (SOM) 
ELM-RBF 
(Kmeans) 

BPNN 

Training Testing Training Testing Training Testing Training Testing Training Testing 

FDD1 87.56% 82.46% 86.12% 82.46% 82.44% 82.11% 80.38% 81.58% 87.66% 84.56% 
FDD2 95.60% 76.96% 93.41% 80.77% 81.43% 80.00% 78.35% 77.31% 91.10% 74.69% 
FDD3 100.00% 94.44% 100.00% 100.00% 98.62% 89.44% 93.08% 83.33% 100.00% 98.33% 
FDD4 92.31% 87.05% 92.31% 75.00% 70.00% 50.00% 66.54% 48.75% 88.46% 75.00% 
FDD5 97.93% 68.75% 86.21% 62.50% 82.20% 60.00% 59.48% 55.63% 82.93% 81.25% 
StDev 0.05 0.10 0.06 0.14 0.10 0.17 0.13 0.16 0.06 0.10 
TestAcc   81.58%   81.60%   77.84%   75.52%   83.46% 
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The first two columns use original data for training (without SMOTE), while the rests show 
the accuracy of all methods using SMOTE for training data. Only minor differences between 
the accuracy of SVMs with or without SMOTE (p-value = 0.6761 from the Mann-Whitney 
test) were detected. The effect of SMOTE was more significant for large differences in the 
number of instances between the two classes, such as 1:100 or 1:1000. In this study, five 
years of observation, which were originally 3,988 instances, revealed that only 99 NOC data 
remained as a result of the IEC and TDCG combination requirements. However, for the first 
three stages, FDD1 to FDD3, SVM with SMOTE presented better results than SVM without 
SMOTE. 

 

Figure 3 Accuracy for each method in each stage 

 
For data with SMOTE, the overall accuracy of BPNN outperformed SVM and ELM-RBF. 

Its standard deviation for testing was the same as SVM without SMOTE, which was the 
smallest: 0.1. However, in a more detailed analysis, in the second and the third stages, SVM 
displayed better performance than BPNN. Figure 3 shows the accuracy for each method 
graphically to clarify the results presented in Table 2. In FDD1, when fault data is detected 
from normal data, the performance among all classifier methods are similar (approximately 
80% accurate). With a decreasing number of training and testing data, the accuracy among 
methods exhibited larger variances, such as in FDD4 and FDD5. ELM-RBF resulted in the 
lowest accuracy in FDD4 and FDD5. This may be due to the limited data training in these 
stages. Consequently, they had relatively lower accuracy than the other stages at only 
approximately 60% to 80% for training, and only 50% to 60% for testing data. In contrast, 
SVM still performed well in the last stages, proving its advantages in cases of limited data. 
Despite the fact that BPNN also displayed similar accuracy to SVM in the last stages, it 
required significantly longer computation times. The computation time comparison is 
depicted in Table 4.  

The accuracy of the testing data, which shows the generalization capability of the 
developed model, resulted in a slightly lower performance. The highest accuracy was 100% 
for FDD3, whereas the lowest accuracies were only approximately 50% for the FDD 4 and 
FDD5 stages. The testing data accuracy for ELM-RBF was also lower than that of the SVM, 
which may be due to data limitation. When data is limited, SVM will have a better 
generalization capability. Figure 3 supports this relationship. Despite the similar accuracy 
at the beginning of the FDD process, along with the lower number of data, the SVM and 
BPNN consistently exhibited better performance. These results support previous studies 
that demonstrated the high performance of SVM and that demonstrated BPNN as the most 
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popular NN-based method (Guardado et al., 2001; Dong et al., 2004; Bacha et al., 2012; 
Souahlia et al., 2012; Sahri and Yusof, 2015; Souza and Ramachandran, 2016). However, 
ANOVA test results showed that the accuracy differences among the various classifier 
methods in all stages were non-significant (p-value = 0.496).  

The accuracy in this study was higher than previous studies that used the same data 
(IEC TC 10). Ghoneim and Taha (2016) displayed only 71.71% accuracy using limit rules 
method, whereas Sahri and Yusof (2015) displayed 51.15% and 51.92% accuracy using 
SVM and GA-SVM, respectively. Bacha et al. (2012) had 73.73% accuracy using SVM with 
similar key gas inputs; however, they used experimental data from the Tunisian Company 
of Electricity and Gas. The results of this study may not be completely satisfactory; however, 
its 80% accuracy represents considerable improvement. 

The other performance metric is recall or sensitivity. Recall measures the ratio of true 
positive (TP) to the total number of TP and false negative (FN), or as follow: TP/(TP+FN). 
By convention, the positive class is the minority, which is the main concern. FN describes a 
condition where a fault datum is classified as a normal datum. In contrast, a false positive 
(FP) occurs when a normal datum is detected as a fault datum. In the FDD problem, the cost 
of a FN is higher than that of a FP, and the recall or sensitivity is more suitable for the 
performance measurement. In this study, the computations were conducted only for SVM 
and BPNN, and recall was only calculated in this first stage.  

 
Table 3 Accuracy versus recall of FDD1 

 SVM BPNN 
FDD1 Training Data Testing Data Training Data Testing Data 

Accuracy 86.12% 82.46% 88.04% 84.21% 
Recall/Sensitivity 81.32% 76.92% 87.91% 80.77% 

 
Table 3 only depicts a comparison of the recall and accuracy for the FDD1 stage, and 

the BPNN results are derived from running a program only once. Therefore, the exact 
number of FNs can be calculated. In the testing data, the recall is slightly lower than that of 
the training data. There is no major difference between accuracy and recall. This indicates 
that during the classification process, not many FNs were found or misclassified as positive 
data (fault) into negative data (NOC). It means that the performance of both classifiers were 
satisfactory.  

 
Table 4 Computation time for each stage 

 Computation time (s) 
SVM ELM-RBF BPNN 

FDD1 2.560 0.045 6.945 
FDD2 1.215 0.026 5.150 
FDD3 0.920 0.013 4.496 
FDD4 0.733 0.007 2.409 
FDD5 0.773 0.011 3.666 
Total 6.201 0.102 22.666 

 
Table 4 shows that on average, the ELM-RBF finishes the computations faster than the 

SVM, (by only 0.102 s in total), whereas SVM is the second fastest (6.201 s) and BPNN is the 
slowest (22.666 s). Such results are supported by previous studies. Despite BPNN 
demonstrating good accuracy, it has some drawbacks, as stated by Kusumoputro et al. 
(2016). These include high computational costs, which is shown by longer computation 
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time, and the risk of being trapped in local minima. The slowest computation time of BPNN 
was due to the gradient descent algorithm applied in the backpropagation, whereas SVM 
used more simple calculations, similar to regression principles. In contrast, ELM-RBF has 
an extremely high learning speed, as claimed in Huang and Siew (2005), which can be a 
hundred times faster than SVM.  

ELM-RBF may be preferable over SVM when big data are applied, in which case the 
difference in accuracy, along with a higher number of data instances, may become 
insignificant. The overall results revealed that in terms of accuracy, BPNN was slightly 
higher than SVM. However, the computation time of BPNN was almost three times slower 
than SVM. The SVM approach with and without SMOTE resulted in higher accuracy and 
consistency compared to the ELM-RBF approach; however, BPNN achieved slightly higher 
accuracy than SVM. The SVM still performed significantly better for a limited amount of data 
because it displayed better generalization, whereas BPNN exhibited the best accuracy.  

 
4. Conclusions 

Based on the two performance measures of accuracy and computation time, it can be 
concluded that the SVM outperforms other NN-based methods, ELM-RBF and BPNN, for the 
proposed multistage fault diagnosis of power transformers using DGA data. SVM performs 
satisfactorily with high accuracy and fast computation time. It has proven to be an effective 
method in terms of classification with a better generalization. Despite its poorer results 
compared to SVM, ELM-RBF also performed the best in terms of computation time. In terms 
of accuracy, BPNN exhibited the best accuracy. In the future, research to improve accuracy, 
data quantity, and data quality should be enhanced by adding more training data, selecting 
optimum features, and combining other types of input data, such as gas ratio. More 
comparisons with other data-driven methods, such as decision trees, kNN, or even deep 
learning, and applying optimization in parameter selections, represent additional options. 
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