
30

Target Tracking with Binary Proximity
Sensors

NISHEETH SHRIVASTAVA

Bell-Labs Research, India

and

RAGHURAMAN MUDUMBAI, UPAMANYU MADHOW, and SUBHASH SURI

University of California at Santa Barbara

We explore fundamental performance limits of tracking a target in a two-dimensional field of
binary proximity sensors, and design algorithms that attain those limits while providing minimal
descriptions of the estimated target trajectory. Using geometric and probabilistic analysis of an
idealized model, we prove that the achievable spatial resolution in localizing a target’s trajectory is
of the order of 1

ρR , where R is the sensing radius and ρ is the sensor density per unit area. We provide
a geometric algorithm for computing an economical (in descriptive complexity) piecewise linear path
that approximates the trajectory within this fundamental limit of accuracy. We employ analogies
between binary sensing and sampling theory to contend that only a “lowpass” approximation of the
trajectory is attainable, and explore the implications of this observation for estimating the target’s
velocity. We also consider nonideal sensing, employing particle filters to average over noisy sensor
observations, and geometric geometric postprocessing of the particle filter output to provide an
economical piecewise linear description of the trajectory. In addition to simulation results validating
our approaches for both idealized and nonideal sensing, we report on lab-scale experiments using
motes with acoustic sensors.

This work was supported by the National Science Foundation under grants ANI-0220118, CCF-
0431205, CNS-0520335, and CCF 0514738; the Office of Naval Research under grant NOO014-06-
0066; and the Institute for Collaborative Biotechnologies through grant DAAD19-03-D-0004 from
the U.S. Army Research Office.
N. Shrivastava was a PhD candidate at University of California, Santa Barbara, when this research
was conducted. R. Mudumbai is now affiliated with the University of Iowa.
A preliminary version of this article was presented at the 4th ACM Conference on Embedded
Networked Sensor Systems (SenSys’06).
Authors’ addresses: N. Shrivastava, Bell-Labs Research, Bangalore, India; email: nisheeths@
alcatel-lucent.com; R. Mudumbai, Electrical and Computer Engineering, University of Iowa, Sea-
mans Center 4016, Iowa City, IA 52242; email: rmudumbai@engineering.uiowa.edu; U. Madhow,
Department of Electrical & Computer Engineering, University of California, Santa Barbara,
CA 93106; email: {raghu,madhow}@ece.ucsb.edu; S. Suri, Department of Computer Science, Uni-
versity of California, Santa Barbara, CA 93106; email: suri@cs.ucsb.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 1550-4859/2009/11-ART30 $10.00
DOI 10.1145/1614379.1614382 http://doi.acm.org/10.1145/1614379.1614382

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 30, Publication date: November 2009.

30:2 • N. Shrivastava et al.

Categories and Subject Descriptors: H.1.1 [Models and Principles]: Systems and Information
Theory—Information theory, Value of information

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Sensor networks, target tracking, binary sensing, fundamental
limits, distributed algorithms

ACM Reference Format:

Shrivastava, N., Mudumbai, R., Madhow, U., and Suri, S. 2009. Target tracking with binary prox-
imity sensors. ACM Trans. Sensor Netw., 5, 4, Article 30 (November 2009), 33 pages.
DOI = 10.1145/1614379.1614382 http://doi.acm.org/10.1145/1614379.1614382

1. INTRODUCTION

We investigate the problem of target tracking using a network of binary prox-
imity sensors: each sensor outputs a 1 when the target of interest is within its
sensing range, and 0 otherwise. This simple sensing model is of both funda-
mental and practical interest for several reasons. First, because of the minimal
assumption about the sensing capability, it provides a simple and robust ab-
straction for a basic tracking architecture of broad applicability, which can be
enhanced in a situation-specific fashion to take advantage of additional infor-
mation such as target velocity or distance, if available. Second, the communi-
cation requirements for the binary proximity model are minimal—each sensor
can smooth out its noisy observations and express its output as one or more
disjoint intervals of time during which the target is in its range, which can be
encoded efficiently by timestamps when the output changes from 0 to 1 and vice
versa. Finally, the simplicity of the model permits the derivation of intuitively
attractive performance limits, which serve both to guide design of tracking
algorithms and to provide lower bounds on tracking performance with more
sophisticated sensors.

We begin by exploring the fundamental limit of spatial resolution that can be
achieved in tracking a target within a two-dimensional field of binary proximity
sensors. The spatial resolution measures the accuracy with which a target’s tra-
jectory can be tracked, and it is defined as the worst-case deviation between the
estimated and the actual paths. We prove that the ideal achievable resolution �

is of the order of 1
ρR , where R is the sensing range of individual sensors and ρ is

the sensor density per unit area. This result articulates the common intuition
that, for a fixed sensing radius, the accuracy improves linearly with an increas-
ing sensor density. But it also shows that, for a fixed number of sensors, the
accuracy improves linearly with an increase in the sensing radius, which occurs
because an increase in the sensing radius leads to a finer geometric partition of
the field. Our spatial resolution theorem helps explain empirical observations
reported in prior work on tracking in binary sensor networks [Kim et al. 2005].

Next, we consider minimal representations and velocity estimation for the
target’s trajectory. There are infinitely many candidate trajectories consistent
with the sensor observations and within the guaranteed spatial resolution of
the true trajectory, and all of which are “good enough” for localization accuracy.
On the other hand, the velocity estimation for the target depends crucially on
the shape of the trajectory. We use an analogy between binary sensing and the

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 30, Publication date: November 2009.

Target Tracking with Binary Proximity Sensors • 30:3

sampling theory and quantization to argue that “high-frequency” variations in
the target’s trajectory are invisible to the sensor field at a spatial scale smaller
than the resolution �. Therefore, we can only hope to estimate the shape or
velocity for a “lowpass” version of the trajectory.1 We then consider piecewise
linear approximations to the trajectory that can be described economically. We
give sufficient conditions for the lowpass version of the true target trajectory
under which such minimal representations can estimate the velocity accurately.

Our results on velocity estimation can be paraphrased as follows: velocity es-
timates for a segment of the trajectory approximated by a straight line are good
if the segment is long enough. This motivates an Occam’s razor approach for
describing the trajectories in terms of piecewise linear paths in which the line
segments are as long as possible, without exceeding the approximation error
limit provided by our spatial resolution theorem. For idealized sensing, we de-
velop the OCCAMTRACK algorithm for efficiently computing such piecewise linear
trajectories, and associated velocity estimates, from the sensor observations.
The efficacy of the algorithm in achieving the fundamental limits on spatial
resolution and velocity estimation error is demonstrated via simulations.

Next, we consider more realistic sensor models, in which the coverage ar-
eas for different sensors may be different, and not exactly known to the tracker
node. For such non-ideal sensors exhibiting sensing errors, it is necessary to av-
erage the sensor observations prior to applying geometric algorithms for obtain-
ing minimal path descriptions. In particular, directly applying the OCCAMTRACK

algorithm to noisy observations can yield poor performance. We provide a sim-
ple model for nonideal sensing, and demonstrate that a particle filter is effective
in smoothing the noisy observations. We then apply a geometric postprocessing
algorithm on the particle filter output to extract an economical piecewise linear
description of the estimated target trajectory, with the required goodness of fit
guided by the fundamental limits on spatial resolution. Simulations are used
to demonstrate the effectiveness of the overall algorithm in providing accurate
tracking with minimal path representations.

Finally, we carried out a lab-scale demonstration with motes equipped with
acoustic sensors for a quick validation of our framework. We found that the
coverage area varies significantly across sensors, and exhibits nonmonotonic-
ity: the probability that a target is detected does not necessarily go down mono-
tonically with distance from the sensor. We employed two approaches to deal
with real-world noisy data: (i) preprocessing of the noisy sensor outputs to clean
up obvious error patterns, followed by the OCCAMTRACK algorithm, and (ii) the
Particle Filter algorithm followed by geometric post-processing. Both these ap-
proaches show good tracking performance.

1.1 Related Work

Object tracking has long been an active area of research for battlefield [Ketcham
et al. 2005], robotics [Rao et al. 1993], and other applications. Any sensor
that generates a signal dependent on distance from a target can be used
for tracking. Accordingly different sensing modalities such as radar, acoustic,

1A technical definition of the lowpass trajectory is given in Section 3.5.1.

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 30, Publication date: November 2009.

30:4 • N. Shrivastava et al.

ultrasonic, magnetic, seismic, video, RF and infrared [Meesookho et al. 2002],
and occasionally combinations of multiple modalities [Chellappa et al. 2004],
have been considered for tracking applications in both theory and practice.
The range and capabilities of these sensors vary widely, and many different ap-
proaches to modeling and data processing have been investigated. For instance,
ultrasonic signals carry rich information about the range of the object, whereas
infrared sensors are best modeled as detectors or binary sensors [Sabatini et al.
1995]. We do not attempt to do justice to the vast literature on tracking, but
briefly review closely related work.

The robustness and effectiveness of tracking using binary sensing models
has been convincingly demonstrated for a large-scale sensor network in Arora
et al. [2004]. The success of this project provides strong motivation for the fun-
damental exploration of binary sensing undertaken here. The Kim et al. [2005]
consider a model identical to ours. They employ piecewise linear path approxi-
mations computed using variants of a weighted centroid algorithm, and obtain
good tracking performance if the trajectory is smooth enough. Our fundamen-
tal limits provide an explanation for some of the empirical observations in Kim
et al. [2005], while our algorithms provide more accurate and more economical
path descriptions. Another closely related paper is Aslam et al. [2003], which
considers a different sensing model, where sensors provide information as to
whether a target is moving towards or away from them. While the specific re-
sults for this model are quite different from ours, the philosophy is similar in
that Aslam et al. [2003] use geometric analysis to characterize fundamental
limits. However, the sensing model in Aslam et al. [2003] can lead to unac-
ceptable ambiguities in the target’s trajectory (the authors offer an example of
parallel trajectories that are indistinguishable without additional proximity in-
formation). In contrast, the binary proximity model considered here, despite its
minimalism, is able to localize the target to within a spatial resolution O(1

ρR).
More recently, our results on the localization accuracy of binary sensors have
been extended to more general types of sensors including nonideal and noisy
sensors [Mudumbai and Madhow 2008]. Liu et al. [2004], present some inter-
esting ideas using geometric duality to track moving shadows in a network of
binary sensors. Although their technique is not applicable to our problem set-
ting, their notion of cells in dual space has some resemblance to our localization
patches. In more recent work [Wang et al. 2008] the idea of localizing a target
to a one-dimensional arc when it enters or leaves a sensor’s coverage area has
also been further developed.

Since binary sensors have a finite sensing region, one important question is
the possibility of lack of coverage in some parts of the network. While we do
not address the coverage problem in this paper, our statistical analysis of the
localization error is based on spatial Poisson processes, similar to the methods
used in the literature on area and path coverage processes [Ram et al. 2007;
Hall 1988].

Classical tracking is often formulated as a Kalman filtering problem, us-
ing Gaussian models for sensor measurements and the target trajectory. Dis-
tributed tracking based on Kalman filtering has recently been considered
[McErlean and Narayanan 2002]. Particle filters [Doucet et al. 2000] offer an

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 30, Publication date: November 2009.

Target Tracking with Binary Proximity Sensors • 30:5

alternative to Kalman filters in non-Gaussian setting, and have been investi-
gated for tracking using sensor networks [Coates 2004]. Most prior work on
particle filtering assumes more sensed information (with a more detailed prob-
abilistic model) than provided by the binary sensing model of this paper. Khan
et al. [2003, 2005] have used particle filtering for an insect tracking application,
where the insect targets are assumed to interact according to a Markov ran-
dom field. Fox et al. [2001] provide a survey of particle-filter based methods for
the problem of mobile robot localization, where robots wish to determine their
location, and the locations of other robots, using sensory inputs. Our contribu-
tion in this paper is to provide a particularly simple particle filtering algorithm
that provides robust performance using the minimal information obtained from
nonideal binary sensors.

2. THE GEOMETRY OF BINARY SENSING

In this section, we describe an idealized model for a binary sensor network,
and the structure of the geometric information it provides regarding a target’s
location. This geometric structure forms the basis for our theoretical bounds
and algorithms.

Consider a network of n sensors in a two-dimensional plane. Each sensor
detects an object within its sensing region, and generates one bit of information
(1 for presence and 0 for absence) about the target; we call this the ideal binary
sensing model. We get no other information about the location, speed, or other
attributes of the target. The information of a sensor is efficiently encoded by
the transitions between its 0 and 1 bits, and so its output can be summarized
by the timestamps marking these transitions.

We assume that the sensors are continuously monitoring the target and that
the sensors are synchronized with each other in time to sufficient accuracy (sev-
eral timing synchronization algorithms are available in the literature [Elson
et al. 2002]), so that the timestamps of the transitions are known accurately. We
also assume that the location of each sensor is known—the sensor locations can
be recorded at the time of deployment, or can be estimated using localization
techniques [Savvides et al. 2001].

Our emphasis is on discovering and attaining fundamental limits of track-
ing performance, and therefore we abstract away lower layer networking is-
sues by assuming that the sensor observations are communicated to, and fused
at, a tracker node. Given the minimal communication needs of binary proxim-
ity sensors, such a centralized architecture may well be the most attractive
choice for implementation in many settings, using multihop wireless communi-
cation between the sensors and the tracker node(s). In any case, it is relatively
straightforward to develop communication- and storage-efficient hierarchical
distributed versions of our centralized algorithms: for example, the tracker
node can be chosen dynamically based on the target’s location, and it can con-
vey its summary of the particular segment of the target’s trajectory to the next
tier of the hierarchy.

For simplicity, we assume that each sensor has a circular sensing region of
radius R: a sensor outputs a 1 if a target falls within the sensing disk of radius R

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 30, Publication date: November 2009.

30:6 • N. Shrivastava et al.

X

Y

Z

t1

t2
t3

t4

t5
X

Y

Z

t6t5t4t3t2t1

X

Y

Z

F1
F2 F3

F4

F5

X

Y

Z

A1 A2

A3

A4

(a () b () c () d)

Fig. 1. A target moving through a field of three binary proximity sensors, X , Y and Z ; (b) shows
sensor outputs as a function of time; (c) shows the localization patches to which the target is
localized over time intervals with constant signature; and (d) shows the arcs marking boundaries
between patches.

centered at its location. The parameter R is termed the sensing range. However,
our framework also applies to sensing regions of more complex shapes that could
vary across sensors. We assume noiseless sensing for the time being: the sensor
output is always 1 if a target is within its sensing range, and always 0 if there is
no target within its sensing range, with 100% accuracy. Methods for handling
noisy sensor readings are considered in later sections.

The geometry of binary sensing is best illustrated via an example. Figure 1(a)
shows a target moving through an area covered by three sensors. Figure 1(b)
shows the sensor outputs as a function of time. We define the signature of any
point p in two-dimensional space as the n-bit vector of sensor readings, whose
ith position represents the binary output of sensor i for a target at location
p.2 In Figure 1, if we define the signature as the bits output by sensors X , Y
and Z in that order, then the target’s signature evolves over time as follows:
000, 100, 110, 010, 011, 001, 000. Initially, it is outside the sensing disks of all
three sensors; then it enters the disk of X , then Y , then it leaves the disk of X ,
enters that of Z , and so on. The time instants {t j } mark the transitions when
the target either enters or leaves a sensor’s range. Figure 1(c) shows that the
target can be localized within a localization patch F j during the time interval
[t j , t j+1), which corresponds to the set of possible locations corresponding to the
signature during this interval. When the target moves from a patch F j to the
next patch F j+1, we note that exactly one sensor’s bit changes: either the target
enters the sensing disk of some sensor, or it leaves the disk of some sensor. The
two patches, F j and F j+1, therefore, share a localization arc Aj of the disk of
the sensor whose reading has flipped, as shown in Figure 1(d). A simple but
important observation is that, at the transition times t j , the two-dimensional
uncertainty in the target’s location is reduced to a one-dimensional uncertainty.

In general, a localization patch need not be connected and, correspondingly,
the localization arc of two such patches can also have two or more pieces. (As
a simple example, consider three sensing disks A, B, C, respectively, centered
at points (0, 0), (1, 0), and (2, 0), where the radius of the disks is 1.5. Then, the
patch with signature (0, 1, 0) has two disconnected pieces—these are the regions

2The notion of signature is a conceptual tool. Our algorithms do not actually use the entire bitmap
for a given target location, but work with a much smaller localized version, as explained in the next
section.

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 30, Publication date: November 2009.

Target Tracking with Binary Proximity Sensors • 30:7

that are inside disk B but outside A and C.) Although disconnected patches
are mainly an artifact of low sensor density, one can also create pathological
examples where a patch can have two pieces even under high density. The
nonconnectivity of patches, however, does not impact the tracking resolution,
because our Theorem 2 ensures that even if a patch is disconnected, all of its
pieces lie within the resolution bound of each other.

The preceding geometric information structure forms the basis for our results
in subsequent sections. Our derivation of fundamental limits in Section 3 is
based on estimation of the size of the regions F j . The geometric algorithms
for computing minimal description trajectory estimates consist of computing
piecewise linear approximations that pass through the patches F j or the arcs
Aj in the order specified by the evolution of the target’s signature.

3. FUNDAMENTAL LIMITS

We assume ideal sensing with sensing range R for each sensor, and an aver-
age sensor density of ρ sensors per unit area. Thus, the performance limits we
derive depend only on the parameters ρ and R. We first show that the spatial
resolution cannot be better than order of 1

ρR , regardless of the spatial distri-
bution of the sensors. We then show that this resolution can be achieved using
standard uniform random distributions as well as regular grids. Finally, we
show that binary sensing is analogous to discrete sampling, in that it provides
information only about a “lowpass” version of the target’s trajectory, and dis-
cuss the implications for obtaining minimal path representations and velocity
estimates.

3.1 An Upper Bound on Spatial Resolution

The localization error of an estimated trajectory is defined to be the maximum
deviation of the estimated path from the actual path. This is just the L∞ norm
of the difference between the actual and estimated trajectories, viewed as func-
tions of time. The spatial resolution of a binary sensor field is the worst-case
localization error for any target trajectory through the field.

As observed in Section 2, binary sensing localizes a target to within a patch
corresponding to a specific signature, or bit vector of sensor outputs. The spatial
resolution is therefore given by the diameter of the largest patch induced by
the binary sensing field. In the following, we argue that in any configuration
of sensors, this diameter is lower bounded by c

ρR , for an absolute constant c,
which gives an upper bound on the achievable resolution.

THEOREM 1. If a network of binary proximity sensors has average sensor
density ρ and each sensor has sensing radius R, then the worst-case L∞ error
in localizing the target is at least �(1/ρR).

PROOF. We are interested in asymptotic behavior and so we assume that the
sensor field is large relative to R, and we can ignore the boundary behavior by
focusing on the portion of the field that is at least R away from the boundary.
Since the average sensor density is ρ in the field, there must be a circular
region of radius 2R that contains at most (the average number of) N = ρ(4π R2)

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 30, Publication date: November 2009.

30:8 • N. Shrivastava et al.

2R

C1

R

x

C2

Fig. 2. Illustration for Theorem 1.

sensors in it. Let x be the center of this circle, let C1 denote the circle of radius R
centered at x, and let C2 be the circle of radius 2R centered at x. (See Figure 2
for illustration.) We observe that only the sensors contained in C2 can sense a
target that lies in C1. Since there are at most N such sensors, their sensing disks
can partition the inner circle C1 into at most N 2 − N +2 “patches” [Agarwal and
Sharir 2000]3. On the other hand, the circle C1 has area π R2, so at least one
of the patches must have area at least cπ R2/N 2, for some constant c. Plugging
in the value of N , we get that some patch in C1 must have area at least

cπ R2

16π2ρ2 R4
= �

(
1

ρ2 R2

)
.

Therefore, the diameter (the longest projection) of this patch is at least �(1
ρR),

the square root of the area, which proves the claim.

Theorem 1 makes no assumptions on the distribution of sensors: it only
makes use of the average sensor density bound, and upper bounds the best res-
olution one can hope to achieve in an ideal deployment. In the next subsection,
we address the complementary question: is this ideal resolution achievable, and
what distributions of sensor nodes can realize this? Our investigation here is
analytic, with a goal of showing that certain simple configurations of sensors
lead to regions where the maximum L∞ error matches the bound of Theorem 1.
Algorithmic questions of computing compact trajectory approximations are ad-
dressed in the following section.

3.2 Achievability of Spatial Resolution Bound

The spatial resolution of Theorem 1 can be achieved (neglecting edge effects) by
simply arranging the sensors in a regular grid. Since such an ideal deployment
is often impossible in practice, we now show that a random Poisson distribution
with density ρ also achieves the desired resolution. In the process, we also derive
a sharp tail bound on the size of a localization patch.

3The result (without proof) can also be found at: http://mathworld.wolfram.com/PlaneDivisionby
Circles.html

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 30, Publication date: November 2009.

Target Tracking with Binary Proximity Sensors • 30:9

P Q

x

Ad

γ

Fig. 3. Illustration for proof of Theorem 2.

Mathematically, the Poisson distribution of mean ρ means that (i) the num-
ber of sensors in a region of area A is a Poisson random variable NA with
mean ρ A, and (ii) for two nonoverlapping regions, the corresponding num-
bers of sensors are independent random variables. We assume an asymptotic
regime in which the probability of a point in the plane being within range of
at least one sensor tends to one. For an arbitrary point P , this condition is
satisfied if there is at least one sensor in a disk of radius R centered at P .
Thus, P [no sensor in disk of radius R] = e−ρπ R2 → 0, which requires that
ρR2 → ∞. (In practice, values of ρR2 of the order of 4 or more suffice to guar-
antee adequate coverage). The following theorem states our result.

THEOREM 2. Consider a two-dimensional network of binary proximity sen-
sors, distributed according to the Poisson distribution of density ρ, where each
sensor has sensing radius R. Then the localization error at any point in the
plane is of order 1

ρR .

PROOF. See Figure 3 for an illustration. Consider an arbitrarily chosen point
P in the plane, and an arbitrarily chosen direction of movement, starting from
that point. Given the isotropic nature of the Poisson distribution, without loss
of generality, this direction can be chosen as going right along the horizontal
direction. Let X denote the minimum movement required in that direction
before there is a change in signature (i.e., before the boundary of some sensor’s
disk is crossed). We wish to characterize the tail of the distribution of X .

To this end, consider a point Q that is a distance x away from P along the
direction of movement, as shown in Figure 3. Any sensor detecting P (resp. Q)
must lie in the disk of radius R with center at P (resp. Q). Thus, P and Q have
the same signature if and only if the symmetric difference of these two disks
(the shaded region in Figure 3) contains no sensor, assuming that either P or
Q is detected by at least one sensor. (Under the assumption that ρR2 is large,
the last condition is met with high probability.)

Letting Ad and Au, respectively, denote the area of the symmetric difference
and the union of the two disks, it follows from the Poisson distribution that

P [X > x] = e−ρ Ad
1 − e−ρ(Au−Ad)

1 − e−ρ Au
, 0 ≤ x ≤ 2R.

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 30, Publication date: November 2009.

30:10 • N. Shrivastava et al.

(We note that Ad ≤ Au, with equality for x ≥ 2R, so that P [X > x] = 0 for
x ≥ 2R. Thus, X is upper-bounded by 2R.) Elementary geometric calculations
yield that

Ad = (
2γ + sin 2γ

)
R2,

where γ is the angle shown in Figure 3, satisfying sin γ = x
2R . For our purpose,

it suffices to loosely bound Ad below as

Ad ≥ 2R2 sin γ = x R

(using γ ≥ sin γ). This implies that

P [X > x] ≤ e−ρ Ad ≤ e−ρRx , (1)

which guarantees the promised asymptotic decay with c, for x = c
ρR . In fact,

the exponent of decay is approximately twice as large as that used in our proof:
this follows because the values of x, and γ , we are considering are small, and
Ad ∼ 2x R, which yields P [X > x] ∼ e−2ρRx .

This theorem can be interpreted in two ways.

(1) The average diameter of a localization patch under random deployment
varies as O(1

ρR).

(2) The probability that the size of a typical localization patch exceeds c
ρR de-

creases exponentially as exp(−c).

3.3 Remarks on Spatial Resolution Theorems

Theorems 1 and 2 show that the spatial resolution cannot be better than O(1
ρR),

and that this resolution can be achieved with a random (Poisson) sensor deploy-
ment. The dependence on sensor density seems to match common intuition:
the more sensors we have, the better the spatial accuracy one should be able
to achieve. On the other hand, the dependence on sensing radius may seem
counterintuitive—because these are binary proximity sensors, they do not ac-
tually measure the distance to the target, and so having a large sensing radius
may seem like a disadvantage. Indeed, as the sensing radius increases, we
seem to get less information from an individual sensor: its 1 bit localizes the
target to a larger area. Nevertheless, as our theorem shows, at the system level,
the accuracy improves with larger sensing radius. This is a good example of
the advantage of networked sensing, where the increase in an individual sen-
sor’s uncertainty is counter-balanced by a quadratic increase in the number of
patches into which the sensor field is partitioned by the sensing disks. When
the sensing radius is small, the sensing disks are either disjoint or overlap only
a little, and there are only O(n) patches. As the radius begins to grow, more
disks pairwise intersect, and at sufficiently large radius, all pairs intersect,
partitioning the sensor field into �(n2) patches, thereby reducing the size of
each patch and improving the localization accuracy. In a finite sensor field, of
course, this improvement stops when the radius becomes comparable to the
length of the field.

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 30, Publication date: November 2009.

Target Tracking with Binary Proximity Sensors • 30:11

Our theorems also help explain some of the empirical results of Kim et al.
[2005] for target tracking using binary proximity sensors. They found that for
a fixed ρR2 (which we can interpret as fixing the average number of sensors
that can detect a target at a given position), better accuracy was achieved for
the combination of “higher density and smaller radius” than “lower density and
larger radius,” leading them to propose that deployments with higher sensor
density and smaller sensing radius are preferable. This empirical observation
is a direct consequence of our theoretical results: for constant ρR2, reducing
the sensing radius by 1/2 corresponds to a factor of 4 increase in the density,
while reducing the density by 1/2 corresponds to

√
2 increase in the radius. The

former combination yields a higher value of ρR, which implies better spatial
resolution.

3.4 Spatial Resolution in d Dimensions

Our theorems for maximum achievable resolution generalize quite easily to d
dimensions. The achievable resolution in d dimension is �(1/(ρRd−1)). In this
section, we give detailed proofs of the d -dimensional results, both in uniform
and possion distributions.

THEOREM 3. If a network of binary proximity sensors deployed in a
d-dimensional space has average sensor density ρ and each sensor has sens-
ing radius R, then the worst-case L∞ error in localizing the target is at least
�(1/(ρRd−1)).

PROOF. The proof follows an argument very similar that of the 2-dimensional
upper bound (Theorem 1). Since the average sensor density is ρ in the field,
there must be a d -dimensional spherical region C2 of radius 2R that contains
at most N = ρπ (2R)d sensors in it. Let x be the center of this sphere, let C1

and C2 denote the spheres of radius R and 2R centered at x (similar to circles
in Figure 2, only in d -dimensions). Again, the N sensors can partition C1 into
at most O(Nd) d -dimensional “patches” [Agarwal and Sharir 2000]4. Since the
volume of C1 is π Rd , at least one of the patches must have volume at least
cπ Rd/Nd , for some constant c. Therefore, the diameter (the longest projection)
of this patch is at least �((cπ Rd/Nd)1/d), the d -th root of the area, which is
�(R/N). Plugging in the value of N , we get the diameter as �(1/(ρRd−1)).

Similarly we can also generalize Theorem 2 to d dimentions.

THEOREM 4. For binary proximity sensors deployed in a d-dimensional space
(d ∈ {1, 2, 3}.), the localization error at any point is of order 1

ρRd−1 .

PROOF. We extend the proof of Theorem 2 result to arbitrary d-dimensional
space. We start with the observation that any point P is detected by sensors
located within a d-dimensional sphere of radius R, and is not detected by any
sensors outside this sphere. Once again we consider a point Q located at a
distance x away from P in some arbitrarily chosen direction. Similar to Figure 3,

4The result (without proof) can also be found at: http://mathworld.wolfram.com/SpaceDivisionby
Spheres.html

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 30, Publication date: November 2009.

30:12 • N. Shrivastava et al.

P and Q lie in different localization regions if and only if there is at least one
sensor in the region Ad , which in d-dimensional space is a spherical annulus.

For 1-dimensional deployment, the annulus Ad is simply two line segments
of total length Ad = 2x. For 3-dimensions, the volume of the annulus can be
shown to be

Ad = 2π

3
R3 sin γ

(
2 + cos2 γ

) ≈ π R2x, if x � R (2)

Thus, in general, we have Ad = cRd−1x, where c is independent of R and x.
Thus we have, analogous to (1)

P [X > x] ≤ e−ρ Ad ≈ e−ρRd−1x (3)

which shows that the size of the localization region varies as 1
ρRd−1 .

3.5 Sampling and Velocity Estimation

The geometric information structure introduced in Section 2 shows that binary
sensors can only localize the target to localization patches, and the resolution
theorems of Section 3 show that these patches attain localization accuracy of
� = O(1

ρR). Thus, as far as spatial accuracy is concerned, nothing further re-
mains to be said. For any sequence of patch boundaries crossed by the target,
there are infinitely many candidate trajectories crossing those patches in the
same order, and any one of which is as good as another because they all lie within
the achievable localization accuracy. Clearly, however, all these paths are not
equally attractive as an estimate of trajectory. On grounds of “representational
frugality,” perhaps one would prefer a path that uses a small number of seg-
ments as opposed to the one that uses a large number of segments. A different
criterion may be to choose paths that track the second important quantity of
interest in target tracking: its velocity. It turns out that these two topics (path
representation and velocity estimation) are in fact closely related, and are the
focus of this section.

Our starting point is an analogy between binary sensing and analog-to-
digital conversion based on sampling and quantization, which immediately sug-
gests that only a “lowpass” version of the trajectory can be reproduced. Consider,
for instance, the trajectory shown in Figure 4, which corresponds to the same
sensor outputs as the trajectory of Figure 1 but includes “high-frequency” vari-
ations around a slowly varying trend. Within the spatial resolution afforded
by our sensor model, these two trajectories are indistinguishable. The high-
frequency trajectory of Figure 4, however, clearly has a higher velocity than
the smooth trajectory of Figure 1. But, as we note below, the high-frequency
component of its velocity cannot be estimated based on binary sensor readings.
This suggests that, among many spatially equivalent paths, piecewise linear
approximations adequately represent the output of the sensor field in terms of
both spatial resolution and velocity estimation. An analysis of velocity estima-
tion errors using such piecewise linear representations leads to the intuitively
pleasing conclusion that paths that use few segments (frugal representation)
are also the paths that lead to good velocity estimation! These ideas lay the

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 30, Publication date: November 2009.

Target Tracking with Binary Proximity Sensors • 30:13

X

Y

Z

t1
t2

t3

t4

t5

Fig. 4. A trajectory exhibiting high frequency variations that cannot be captured by binary sensors.

foundation for our algorithms (described in Section 4) that employ an Occam’s
razor approach to the construction of estimated trajectories.

3.5.1 Lowpass Trajectories. We begin with a simple but important inter-
pretation of a binary sensor field as a device for spatial sampling. Let x(t) denote
the two-dimensional vector specifying the true location of the target at time t.
Using the notation of Section 2, we can say that x(t j) ∈ Aj , where {t j } are
the times at which the target’s signature changes, and Aj is the arc defining
the boundary between the patches F j and F j+1. For a moment, assume that
a genie or an oracle actually tells us the precise locations x(t j), for the set of
time instants {t j }. We can now infer the following about the velocity vector
�v(t) = dx/dt: ∫ t j+1

t j

�v(t) dt = x(t j+1) − x(t j).

In other words, even with the genie’s aid, all that we can say about the target’s
trajectory during the interval [t j , t j+1) is that (i) the target is confined to the
patch F j , and (ii) the average vector velocity of the target in the patch is

�vj = x(t j+1) − x(t j)
t j+1 − t j

We denote the corresponding scalar average velocity by vj = ||�vj ||.
Note that we cannot infer anything about the deviation �v(t)−�vj in the vector

velocity from its average over the path, since this deviation integrates to zero
in the time interval [t j , t j+1). This means that any high-frequency fluctuations
in the path that are of small enough amplitude to stay within the patch F j are
entirely “invisible” to the binary sensor field.

Indeed, for a one-dimensional field of sensors, the sampling and quantiza-
tion interpretation is immediate, without requiring invocation of a genie: the
patches reduce to intervals and the arcs reduce to points. In this case, the binary
sensor field is identical to a level-crossing analog-to-digital converter [Sayiner
et al. 1996].

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 30, Publication date: November 2009.

30:14 • N. Shrivastava et al.

Fig. 5. Two paths in REP (the zig-zag and the straight line) can differ in length by at most a factor
of 2.

Therefore, at best we can hope to reconstruct a lowpass representation of
the target’s trajectory, which we define as a piecewise linear approximation
over spatial scale �, with line segments connecting the sequence of points
x(t1), x(t2), Other definitions that interpolate more smoothly across the arcs
Aj are also possible, but the piecewise linear form has the virtue of being a mini-
mal representation of the information obtained from the binary sensors and the
genie (in particular, it preserves information in the average velocity sequence
{�vj }).

The trajectory shape and the velocity estimates for the lowpass representa-
tion serve as a benchmark for comparing the output of any algorithm based
on the sensor readings. Since this benchmark is defined with the genie’s help
(which eliminates the spatial uncertainty at each arc Aj), it is not attainable
in practice without some additional assumptions regarding the trajectory, as
discussed in the next section.

3.5.2 Velocity Estimation Error. The set of all piecewise linear paths that
visit the sequence of arcs Aj in the order given by the sensor signature sequence
forms an equivalence class under the spatial resolution: all these paths are
equivalent to the lowpass trajectory defined by the genie within the spatial
resolution �. Let us call this set REP, for spatial Resolution Equivalence Paths
class. Even considering the lowpass representation, where all fluctuations of
spatial scale smaller than � are removed, two paths in REP can differ in length
by a factor of 2: in a triangle of side length �, there are two possible paths, one
of length � that follows one side, and one of length 2� following the other two
sides. (See Figure 5.) More generally, one path can be a straight line, and the
other can zig-zag taking 2� long detours for each segment of length � covered
along the straight line.

In the absence of any other information, we simply have no way to decide
which among the many candidate paths in the equivalence class REP offers
the best approximation to the true path. The only way to decrease this uncer-
tainty is to assume additional conditions that help shrink the spread of the
path lengths in the equivalence class. In the following, we identify simple and
natural technical conditions under which all the paths in the equivalence class
have roughly the same length, and therefore any choice is guaranteed to give
a good approximation. In particular, just as the accuracy of spatial resolution
is controlled by size of the localization patches, the accuracy of the velocity

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 30, Publication date: November 2009.

Target Tracking with Binary Proximity Sensors • 30:15

estimation is controlled by the variance in the path lengths of the equivalence
class.

We consider minimal representations of the trajectory in terms of piecewise
linear approximations with line segments spanning several patches, and ask
when velocity estimations computed using such a representation are accurate.
That is, we seek conditions under which the entire class of equivalent paths pro-
vides a good approximation to the genie-aided average scalar velocity function,
which is a piecewise constant sequence taking value vj over the time interval
[t j , t j+1).

We first relate the relative error in velocity estimation to the relative spread
in path lengths in the equivalence class REP. Suppose that the estimated trajec-
tory is of length L between arcs Ak and Ak+m. Assuming that the scalar velocity
is constant over this path segment, it can be estimated as the length divided by
the time to go between arcs Ak and Ak+m: v = L/(tk+m − tk). Suppose the true
trajectory between Ak and Ak+m has length L + δL. Then, our velocity estimate
error is δv = δL/(tk+m − tk). We therefore obtain that

δv
v

= δL
L

(4)

That is, by considering the relative variation δv
v in velocity rather than the

absolute variation δv, we are able to remove dependence on time scaling. The
results we derive depend, therefore, only on the spatial variations of the path
shape and its velocity, and not on time scale.

The main consequence of Equation (4) is that, if L is large enough and the
permissible variation δL (constrained both by the sensor readings and the as-
sumptions we make about the true trajectory) is small enough, then we can
obtain accurate velocity estimates. For example, in order for a velocity estimate
to be accurate to within 10%, we need to be able to guarantee that δL ≤ 0.1L. If
we assume that the scalar velocity is constant over large enough path sections,
then we may be able to accurately estimate the velocity as long as the variations
in path lengths consistent with the sensor readings can be controlled. Controlling
the path length fluctuations is the same as bounding the path length spread in
our equivalence class REP.

The following theorem characterizes the intrinsic ambiguity (caused by the
spatial resolution �) in velocity estimation based on straight line approxima-
tions, arguing the the relative spread in path lengths is small if the line segment
is long enough.

THEOREM 5. Suppose a portion of the trajectory is approximated by a straight
line segment of length L to within spatial resolution �. Then, the maximum
variation in the velocity estimate due to the choice of different candidate straight
line approximations is at most

δv
v

≤ 2
(

�

L

)2

.

Furthermore, this also bounds the relative velocity error if the true trajectory is
well approximated as a straight line over the segment under consideration.

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 30, Publication date: November 2009.

30:16 • N. Shrivastava et al.

PROOF. By our spatial resolution theorem, the true trajectory is (approx-
imately) a straight line that must lie within � of the straight line approxi-
mation s we are considering. That is, it must lie in a rectangle of width 2�

with s as its long axis. The maximum deviation in length from the approxima-
tion s is if the true trajectory is the diagonal of this rectangle, whose length is
L + δL = 2

√
(L/2)2 + �2, which yields δL ≈ 2�2

L for � � L. Clearly, this bound
also applies for deviation of the true trajectory from the straight line approxi-
mation being considered, as long as the true trajectory is well approximated as
a straight line over the current segment. We now apply Equation (4) to obtain
the desired result.

Theorem 5 implies that, if we want to control the relative velocity error to
less than ε using a piecewise linear approximation, then the length of each line
segment must be at least

L ≥ L0 =
√

2�√
ε

. (5)

As an example, to achieve error at most 10%, segments of length 5� suffice;
error of 5% requires segments of length ≈ 6.32�. Put another way, if on average
each linear approximation segment spans α localization arcs, then the average
relative velocity error is dv/v ≤ 2/α2. Our simulation results show that even for
fairly complex (synthetic) trajectories, a piecewise linear approximation works
well, with α at least 10 on average.

Note that, for trajectories that “wiggle” while staying within � of a (long
enough) straight line, Theorem 5 can be interpreted as guaranteeing accuracy
in estimation of the projection of the velocity along the straight line. On the
other hand, if a trajectory curves sharply, piecewise linear approximations to
within � of the trajectory must necessarily use shorter line segments, making
the velocity estimation error worse. But this is unavoidable because over short
spans, the relative difference between two linear segments is larger, as implied
by Theorem 5: in the extreme case, where L ≈ �, we are back to the factor of
two error discussed at the beginning of Section 3.5.2.

4. TRACKING ALGORITHMS

The theoretical considerations of the previous section motivate an Occam’s ra-
zor approach to tracking. Among all the candidate paths meeting the spatial
resolution bound, a piecewise linear approximation that uses a minimal number
of segments has the advantage of compact representation as well as accurate
velocity estimation. Using the notation of Section 2, we know that the target
is constrained to lie in region F j during the time interval [t j , t j+1], where {t j }
are the time instants at which there are changes in the bit vector of sensor
outputs. We formally define a localization region F j , corresponding to an inter-
val [t j , t j+1), as follows, dropping the subscript j for convenience. Let I be the
subset of sensors whose binary output is 1 during the relevant interval, and
let Z be the remaining sensors whose binary output is 0 during this interval.

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 30, Publication date: November 2009.

Target Tracking with Binary Proximity Sensors • 30:17

Fig. 6. The shaded band shows the regions {Fi} to which the trajectory is localized by the sensor
outputs.

Then the region F of the plane to which the target can be localized during this
interval is given as:

F =
⋂
i∈I

Di −
⋃
i∈Z

Di,

where Di is the sensing disk of radius R centered at sensor i. Note that it is
not necessary to consider the entire set Z in order to determine F : it suffices to
consider only those sensors whose disks can intersect with any disk in I . Thus,
in our implementation, it is necessary only to maintain, for each sensor s, a
neighbor list of all other sensors whose sensing disks intersect with the disk
of s.

Figure 6 shows an example trajectory and the band consisting of the regions.
Any trajectory that traverses these regions in the order specified by the sens-
ing outputs is consistent with the target’s true trajectory, within the accuracy
bounds of the model. Among all these possible trajectories, the Occam’s razor
approach prefers the one that is the simplest. For instance, if all the regions
could be traversed by a single line, then a linear trajectory has the simplest
descriptive complexity, within the theoretical accuracy of tracking. General-
izing this, a piecewise linear trajectory with the fewest number of linear seg-
ments that traverses all the sensed regions in order is the trajectory of minimal
complexity. In the following section, we describe a geometric algorithm, OCCAM-
TRACK, for computing such a trajectory. Our computational model assumes that
a tracker node collects the output from the sensor nodes, and runs the algorithm
to compute the trajectory. The algorithm, however, can also be implemented in
a distributed fashion by exchanging data among the neighboring nodes.

4.1 The OCCAMTRACK Algorithm

Algorithm 1 describes the OCCAMTRACK at a pseudo-code level. S is the set of
all the sensors, and the algorithm operates in discrete time steps T , which
are simply the instants at which one of the sensor’s binary state changes. At

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 30, Publication date: November 2009.

30:18 • N. Shrivastava et al.

Algorithm 1 OCCAMTRACK(S)

1: T ← {s.start, s.end : ∀s ∈ S};
2: sort(T);
3: for all t ∈ T do
4: I ← {s : t ∈ [s.start, s.end]};
5: Z ← {s : s ∈ I.nbrlist ∧ t /∈ [s.start, s.end]};
6: F ← ⋂

i∈I Di − ⋃
i∈Z Di ;

7: B ← B ∪ F ;
8: end for
9: L ← MINSEGPATH(B);

each of these discrete time steps t, the algorithm determines the sets I and
Z , and computes the region F localizing the target. The time-ordered sequence
of these regions F is the spatial band B that contains the target’s trajectory.
The function MINSEGPATH then computes a minimum piecewise linear path
traversing the band.

In the pseudo-code for MINSEGPATH, the function FINDARCS determines the
ordered sequence of localization arcs corresponding to the localization band
B.5 The function FINDLINE either determines that a subsequence of arcs
qi, qi+1, . . . , qj cannot be “stabbed” (in the given order) by a single line, or finds
such a stabbing line. The algorithm MINSEGPATH uses this function in a greedy
fashion to find the longest prefix of arcs that can be approximated by a single
line segment, removes those arcs, and then iterates on the remaining sequence.
There are only a finite number of combinatorially distinct candidate lines one
needs to test to decide if a sequence of arcs can be stabbed by a line. In particu-
lar, it suffices to test the lines formed by pairs of endpoints of arcs, or lines that
are tangent to some arc.6 Figure 7 shows the minimal description path for the
example of Figure 6.

We now briefly describe how we estimate the velocity of the target using the
piecewise linear path L generated by OCCAMTRACK. For each segment � ∈ L,
we know the time instances of its first and last arc intersections, and hence
the velocity can be estimated as the length of � divided by the time difference.
If the length satisfies the Equation (5), we will get a good estimate. This will
generate the velocity for each segment in the target path. Notice that if the path
was traveling along roughly a straight line, but with highly variable speed, the
estimated velocity would be simply an average of the velocity and would not
capture the variations in velocity too well.

5While a localization arc can have multiple pieces in a pathological case, the union of all its sub-
arcs is still within the resolution bound (cf. Theorem 2). Thus, for the purpose of minimal path
representation, we can safely “interpolate” all the disconnected pieces of the arc and still remain
within the tolerable error. However, to keep our implementation simple, we chose to ignore such
pathological contingencies, and opted to simply ignore an arc if it were found to be disconnected.
6In computational geometry, several theoretically more efficient methods [Guibas et al. 1991] are
known for these stabbing problems, but they are complicated to implement and involve significant
overhead in data structures. We chose to implement our algorithm because it is simple, compact,
works fast in practice.

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 30, Publication date: November 2009.

Target Tracking with Binary Proximity Sensors • 30:19

Fig. 7. The path computed by OCCAMTRACK has 3 line segments. The sequence of arcs delineating
the regions of band B are shown in thick lines.

If we are willing to sacrifice description minimality, we can generate better
velocity estimates as follows. Consider the segments in the piecewise linear
path generated by MINSEGPATH, and notice that each segment � has a specific
sequence of arcs {Ai, Ai+1, . . . , Aj }, that it intersects. These intersection points,
{pi, pi+1, . . . , pj }, and time instances of arc-crossing gives an estimate of loca-
tion snapshots of the target in time. We can use this information and consider
a window {pi, pi+1, . . . pk}, such that the length of segment in this window is
greater than L0 (see Equation (5)). We can now estimate the local velocity of
this window using the length and the crossing times of pi and pk ; this velocity
estimate will have an error of at most ε. We can now slide the window of points
by one and again repeat the same procedure. This will capture the variable
velocity better, but would be more memory intensive since in the worst case we
could be storing one estimate per arc.

4.2 Analysis of OCCAMTRACK

By construction, the piecewise linear path computed by OCCAMTRACK intersects
the regions of the band B in the same order as given by the binary sensor’s out-
put. This follows because MINSEGPATH constrains the path to visit the boundary
arcs of consecutive regions in order. This, however, does not mean that the true
trajectory and the piecewise linear path visits the same sequence of regions.
The linear shortcuts found by OCCAMTRACK can visit additional regions. This
can happen if the linear segment crosses over a nonconvex vertex of one of the
regions. For example, in Figure 8, the piecewise linear path cuts the dashed
arc and goes outside the shaded region, which is not visited by the original
trajectory.

The important point to note, however, is that the maximum distance between
the true trajectory and the computed path at any instant (the L∞ error) is still
bounded by � = O(1/ρR), because the path computed by OCCAMTRACK does
lie entirely within the union of the convex hulls of the F regions in the band

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 30, Publication date: November 2009.

30:20 • N. Shrivastava et al.

Fig. 8. Illustration to show that the reconstructed path may not visit the same sequence of arcs
as the original trajectory.

B. Since the diameter of the convex hull of any F region is bounded by �,
the error guarantee follows. Notice that in Figure 8, the piecewise linear path
always stays within the convex hull of the patch with the dashed arc.

We can also prove that the MINSEGPATH finds a path that stabs the sequence
of arcs that the target’s track intersected and has at most twice the number of
segments of the minimum description path. The reason for this 2-approximation
is as follows. The MINSEGPATH greedily attempts to find the longest possible
sequence of arcs that can be intersected by a single line segment. However, the
segments generated by this method are floating, that is, they do not necessarily
meet at the arcs. For example, if the output contains one line segment � for arcs
{A1, A2, . . . , Ak}, and the next �′ for Ak+1, Ak+2, . . . , Am}, then � will end at Ak

but �′ will start at Ak+1, leaving a gap between the two arcs. We extend � and �′

to get a continuous piecewise linear path. Further, it may be that the extensions
of � and �′ do not intersect. Whenever this occurs, we use another segment to
join them, thus requiring at most twice the minimum number of segments.

The aim of MINSEGPATH is to find the minimal description path that stabs the
given sequence of arcs intersected by the trajectory; by construction it should
also give a linear approximation to the trajectory with minimum number of
segments. Unfortunately, this cannot be guaranteed because MINSEGPATH is
forced to visit the arcs Aj that the target trajectory visits. On the other hand,
it could be that the linear approximation with minimum number of segments
of the trajectory does not even visit the same arcs. In fact, in the worst case one
can imagine a situation that the target trajectory curves in such a way that it
alternately touches the top and the bottom endpoints of the arcs Aj in the given
sequence. Thus, any linear approximation of such a trajectory that is forced to
visit the same arc sequence will require as many segments as the number of
arcs.

However, one can still argue the following type of near-optimality: if a portion
of the target trajectory can be approximated by a line segment with maximum
L∞ error �, then MINSEGPATH run as a postprocessing cleanup on the output
of OCCAMTRACK can approximate that part of the trajectory with a line seg-
ment with maximum error 2�. Thus, the piecewise linear path produced by
OCCAMTRACK, possibly with a second cleanup phase (similar to the geometric

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 30, Publication date: November 2009.

Target Tracking with Binary Proximity Sensors • 30:21

Algorithm 2 MINSEGPATH(B)

1: A ← FINDARCS(B);
2: i ← 1;
3: for all j ∈ 1, 2, . . . , m do
4: if ¬ FINDLINE(Ai , Ai+1, . . . , Aj) then
5: L ← L ∪ FINDLINE(Ai , Ai+1, . . . , Aj−1);
6: i ← j ;
7: end if
8: end for

postprocessing presented in Section 4.3.2), can also estimate the velocity with
the same order of error as given by the fundamental limit.

Computationally, the algorithm OCCAMTRACK is highly efficient because its
time complexity depends only on the number of sensor boundaries that the
trajectory crosses (that is, the number of arcs). Computing the sequence of arcs
is relatively straightforward and can be done in constant time per arc; analysis
of the MINSEGPATH algorithm is slightly more complex. As mentioned in previous
section, to compute the line through a given sequence of m arcs, it suffices to
test the lines formed by pairs of endpoints of arcs, O(m2) in total. For every
line, we need to check if the line intersects the given sequence of arcs, which
can be done in at most O(m) time per line. Hence the total time complexity of
MINSEGPATH is O(m3). The algorithm needs to store the candidate paths for the
current sequence of arcs, hence the memory required is O(m2). Hence we get
the following result.

THEOREM 6. If there are m arcs in the sequence, then the worst-case time
complexity of OCCAMTRACK is O(m3) and it uses O(m2) memory.

Notice that Algorithm 2 is actually a simplified version, which does not re-
member the test results for previous candidate lines, and has to retest all pair
of endpoints for the current sequence (in procedure FINDLINE) while insert-
ing each new arc. This requires requires slightly more computation O(m4) but
works with only O(m) memory.

4.3 Robust Tracking with Nonideal Sensors

The OCCAMTRACK algorithm assumes ideal binary sensing. In practice, sensing
is imperfect and noisy: a sensor could detect an object outside its nominal range,
or it may fail to detect an object inside its range. We illustrate our approach to
such non-idealities using a sensing model in which the target is always detected
within an inner disk of radius Ri, called the detection region, and is detected
with some nonzero probability in an annulus between the inner disk and an
outer disk of radius Ro, called uncertain region. Targets outside the outer disk
are never detected. This is similar to the “quasi unit disk graph” model proposed
in Kuhn and Zollinger [2003] for ad-hoc networks, and is illustrated in Figure 9.
Despite its simplicity, such a model is of fairly broad applicability, since it arises
naturally if sensors integrate noisy samples over a reasonable time scale to
make binary decisions regarding target presence or absence.

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 30, Publication date: November 2009.

30:22 • N. Shrivastava et al.

Ri
Ro

Fig. 9. The non-ideal sensing model.

The main implication of the model in Figure 9 for the OCCAMTRACK algorithm
is that we can no longer identify circular arcs corresponding to an object enter-
ing and leaving a sensor’s detection range. While we can employ OCCAMTRACK

algorithm directly by approximating the sensing region as a disk of some radius
R, where Ri ≤ R ≤ Ro, simulations show that the performance can be poor.
We therefore consider an alternative approach, in which we employ a particle
filtering algorithm to handle nonidealities. While this produces a good approx-
imation of the true trajectory, it is not amenable to an economical description.
We therefore employ a geometric post-processing algorithm to obtain a minimal
representation for the output of the particle filtering algorithm. While particle
filtering is a well established technique, the main novelty of the algorithm pre-
sented here is the way in which it exploits the constraints of the sensing model
for a simple and efficient implementation.

In order to illustrate robustness to nonideal sensing, we take a worst-case
approach to the information provided by the nonideal sensing model in Figure 9,
assuming the maximal uncertainty consistent with the sensor readings. If a
sensor output is 1, then we assume that the target is somewhere inside the
large disk of radius Ro centered at the sensor. If a sensor output is 0, then
we assume that the target is somewhere outside the small disk of radius Ri

centered at the sensor. A localization patch F at any time instant is given by
intersecting all such areas, just as before.

4.3.1 Particle Filtering Algorithm. We now sketch the particle filtering al-
gorithm; a more detailed description and software implementation is available
from the authors upon request. At any time n, we have K particles (or can-
didate trajectories), with the current location for the kth particle denoted by
xk[n]. At the next time instant n + 1, suppose that the localization patch is F .
Choose m candidates for xk[n + 1] uniformly at random from F . We now have
mK candidate trajectories. Pick the K particles with the best cost functions to
get the set {xk[n + 1], k = 1, . . . , K }, where the cost function is to be specified
shortly. Repeat until the end of the time interval of interest. The final output
is simply the particle (trajectory) with the best cost function.

Notice that the localization patch is actually: F = ∩i∈I Di − ∪ j∈Z Ni, where
I, Z are the set of detecting and nondetecting sensors, Di is the disk of radius

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 30, Publication date: November 2009.

Target Tracking with Binary Proximity Sensors • 30:23

Ro around the detecting sensor i and N j is the disk of radius Ri around the
nondetecting sensor j .

Particle filters are a special case of the so-called sequential Monte Carlo
methods, where the candidate paths (“particles”) at each time instant n are
created iteratively, from the candidate paths from the previous time instant
n − 1 along with the inputs at time n. Note that as we increase the number of
particles K , we expect to get better results, however computational complexity
limits the value of K in practice. The sampling time interval is chosen to be
much shorter compared to the time difference between two localization patches,
so as to generate a sufficiently rich set of candidates.

It remains to specify the cost function. We chose an additive cost function
that penalizes changes in the vector velocity, in keeping with our restriction
to lowpass trajectories. Once a candidate xk[n + 1] is chosen from the current
localization patch, the increment in position xk[n+1]−xk[n] is an instantaneous
estimate of the velocity vector at time n. The corresponding increment in the
cost function is the norm squared of the difference between the velocity vector
estimates at time n and n − 1. This is given by

ck[n] = ||(xk[n + 1] − xk[n]) − (xk[n] − xk[n − 1])||2
= ||xk[n + 1] + xk[n − 1] − 2xk[n]||2.

The net cost function for a candidate trajectory up to time n is simply the sum
of these incremental costs:

∑n
m=1 ck[n].

4.3.2 Geometric Postprocessing. The particle filtering algorithm described
above gives a robust estimate of the trajectory consistent with the sensor ob-
servations, but it provides no guarantees of a “clean” or minimal description.
This suggests the possibility of applying the geometric approach of Section 4.1
to the particle filter estimate to generate a more economical description. We
now present a geometric cleanup algorithm, FITLINE, that converts Particle Fil-
ter estimate into a piecewise linear approximation with a small number of line
segments. Algorithm 3 above describes the FITLINE at a pseudo-code level. It
takes the ordered list of location samples p generated by PARTICLE-FILTER, and
finds the piecewise linear path L. The algorithm proceeds in a greedy fashion:
it tries to fit the longest sequence of points using a single line, until the error in
that sequence is less than �. If adding the next point exceeds the desired error,
it stores the last line and start afresh with the next point. The function LINE-
SEGMENT(Q) returns a line segment that is within distance � of the sequence

Algorithm 3 FITLINE(p)

1: Q ← φ;
2: for all i ∈ 1, 2, . . . , |p| do
3: if ERROR(Q ∪ pi) > � then
4: L ← L ∪ LINESEGMENT(Q);
5: Q ← φ;
6: end if
7: Q ← Q ∪ pi ;
8: end for

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 30, Publication date: November 2009.

30:24 • N. Shrivastava et al.

-0.1

 0

 0.1

 0 500 1000 1500 2000

R
e

la
ti
v
e

 V
e

lo
c
it
y
 (

d
v
/v

)

Time (s)

 0

 0.5

 1

 1.5

 2

V
e

lo
c
it
y

(a) Weighted-Centroid (b) OccamTrack (c) Velocity estimate
by OccamTrack

Fig. 10. Quality of trajectories produced by the weighted-centroid algorithm of Kim et al. [2005]
and OCCAMTRACK. Figure (c) shows the results of velocity estimation by OCCAMTRACK.

of points Q , and ERRORQ returns the values maximum distance of any point
in Q with the best fitting line. We omit the details of procedures to compute
the error (ERROR) and to find the best fitting line (LINESEGMENT), the interested
readers can find a detailed discussion in Agarwal et al. [2005].

5. SIMULATION RESULTS

We carried out extensive simulation tests to evaluate the performance of all
our algorithms, under both ideal and nonideal sensing models. The code for
OCCAMTRACK was written in C and C++, the code for PARTICLE-FILTER was written
in Matlab, and the experiments were performed on an AMD Athlon 1.8 GHz
PC with 350 MB RAM. We first discuss our results for the ideal sensing model.

5.1 OCCAMTRACK with Ideal Sensing

Our general experimental setup simulated a 1000 × 1000 unit field, containing
900 sensors in a regular 30×30 grid. The sensing range for each sensor was set
to 100 units. When evaluating the scaling effects of the sensor parameters, we
kept the field size and one parameter fixed, while the other parameter (radius
or density) was varied.

We used geometric random walks to generate a variety of trajectories. Each
walk consists of 10 to 50 steps, where each step chooses a random direction
and walks in that direction for some length, before making the next turn. Each
trajectory has the same total length, and we generated 50 such trajectories
randomly.

5.1.1 Quality of Trajectory Approximation. On all 50 random walk trajec-
tories, OCCAMTRACK delivers excellent performance. Figure 10(b) is a typical
example, where the true trajectory is virtually indistinguishable from the ap-
proximation computed by OCCAMTRACK.

We also ran the weighted-centroid algorithm of Kim et al. [2005] on these
trajectories. In our comparison, we used the adaptive path-based version of
their algorithm, which is claimed to be well suited for complex and nonlinear
trajectories. For ease of reference, however, we still refer to this algorithm as
the weighted-centroid scheme. We ran this algorithm with inner and outer radii
both equal to the ideal radius 100.

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 30, Publication date: November 2009.

Target Tracking with Binary Proximity Sensors • 30:25

(a) Track C1 (b) Track C2 (c) Track C3

(d) size = 17; error = 1.01 (e) size = 17; error = 0.35 (f) size = 11; error = 1.01

(g) size = 1000; error = 1.74 (h) size = 1000; error = 1.90 (i) size = 1000; error = 1.64

Fig. 11. Outputs of the tracking algorithms. Figure shows input trajectories (top row), path esti-
mate by OCCAMTRACK (middle row) and Weighted-Centroid algorithm (bottom row).

Figure 10(a) shows the output of the weighted-centroid method, and is typical
of its performance on all our random walk trajectories. Figure 11 shows results
of OCCAMTRACK and weighted-centroid method on three sample trajectories. The
weighted-centroid algorithm is sample based, and it used 1000 vertices to ap-
proximate each of the trajectories. By contrast, the OCCAMTRACK used between
20 and 70 vertices. Despite this frugal representation, the maximum localiza-
tion error for OCCAMTRACK was always smaller than the weighted-centroid, on
average by 30%, and in some cases by a factor of five. Due to its highly efficient
structure, OCCAMTRACK is also 300 times faster than weighted-centroid. In all
cases, our algorithm took less than 10 milliseconds, while weighted-centroid
took between 2 and 20 seconds.

5.1.2 Velocity Estimation Performance. In our random walk trajectories,
we also varied the scalar velocity randomly at each turn, and then used OC-
CAMTRACK to estimate the scalar velocity along the trajectory. For each linear
segment in the piecewise linear path computed by OCCAMTRACK, we used the
first and the last localization arc to determine the time spent on that segment;
recall that sensor outputs tell us the exact times for each arc. We estimate
the scalar velocity for this segment by dividing the length of the segment by
this time. With a goal of estimating the velocity within ε = 0.1, namely, 10%,
we estimated the average velocity only over path segments of length at least
L = √

2�/
√

ε, as given by Equation (5).

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 30, Publication date: November 2009.

30:26 • N. Shrivastava et al.

 0

 10

 20

 30

 40

 50

 60

 0 1000 2000 3000 4000 5000 6000 7000

M
a
x
 E

rr
o
r

in
 L

o
c
a
ti
o
n

Density (rho)

Grid
Random

Theoretic curve: 1/rho

Fig. 12. Spatial resolution vs. sensor density.

In Figure 10(c), we show the results of estimating the velocity for the sample
trajectory of (b). The top figure shows the overlay of both the true and the
estimated velocities along the trajectory, and one can see that the two agree
very well. In the bottom figure, we plot the relative error in the velocity to
highlight deviation. The figure shows that the maximum deviation is always
less than 10%, as predicted by theory.

The results were very similar for all 50 trajectories. In particular, on average
a segment of OCCAMTRACK’s trajectory spanned about 15 patches, meaning that
an average line segment in the approximation has length L = 15�, meaning
that the velocity estimates are good, as explained by Theorem 5.

In the following two experiments, we evaluated the localization accuracy of
OCCAMTRACK with varying ρ and R over many random trajectories, to see how
it compares to the theoretical predictions of our theorems.

5.1.3 Spatial Resolution as a Function of Density. In this experiment, we
measured the maximum error in localizing the target’s trajectory for a varying
values of the sensor density. We kept the size of the field and the sensing radius
R fixed, and then varied the number of sensors in the field from n = 100 to
n = 6400. (Since the area of the field is 106, this corresponds to variation in
density from 10−4 to 6.4 × 10−3.) We tried both the regular grid arrangement
of the sensors, as well as the random placement.

By the spatial resolution theorem, the localization error should decrease
inversely with the density. Figure 12 shows that the measured error follows
closely the theoretical curve of 1/ρ, both for the grid as well as the random
placement. In each case, the reported error is the maximum error for the tra-
jectory, averaged over 50 random walk trajectories. (The average error for each
trajectory is much smaller.)

5.1.4 Spatial Resolution as a Function of Sensing Range. In this experi-
ment, we kept the density constant at 900 nodes in the field, and varied the

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 30, Publication date: November 2009.

Target Tracking with Binary Proximity Sensors • 30:27

 0

 5

 10

 15

 20

 25

 30

 50 100 150 200 250 300 350 400 450 500

M
a
x
 E

rr
o
r

in
 L

o
c
a
ti
o
n

Sensing Radius (R)

Grid
Random

Theoretic curve: 1/R

Fig. 13. Spatial resolution vs. sensing radius.

sensing radius from 50 to 400 units. Figure 13 shows the maximum error, aver-
aged over 50 random walk trajectories, for various values of the sensing range.
By the spatial resolution theorem, the localization error should decrease in-
versely with the sensing range, and again the measured values closely follow
the theoretical curve of 1/R.

5.1.5 Velocity Accuracy as a Function of Density. In this experiment, we
measured the accuracy of velocity estimates of the target’s trajectory for dif-
ferent values of the sensor density. We again kept the size of the field and the
sensing radius R fixed, and varied the number of sensors in the field (hence
density) from n = 100 to n = 6400. For both grid and random placement, the
velocity error decreases inversely as the density is increased (see Figure 14).
Since we kept both velocity of the trajectory (v) and the minimum segment
length for which velocity is estimated (L0) as constant, the velocity accuracy
should vary roughly quadratically as the spatial resolution (Theorem 5). The
measured values follow the curve of 1/ρ2, experimentally validating this rela-
tionship.

5.2 Tracking with Nonideal Sensing

We now describe the results of our experiments with non-ideal sensors. Our
model of nonideal sensors is the one shown in Figure 9, where in the region
between distance Ri and Ro, the target is detected with probability 1

2 . An im-
perfect detection is problematic for the ideal geometric algorithm OCCAMTRACK

because it relies on contiguous time intervals during which the target is inside
the range. We used a simple hysteresis process to mitigate the affect of erratic
detection: to signal the beginning of a detection interval, we require the sensor
to output a 1 bit for 3 consecutive time samples; similarly, to signal the end of
a detection interval, we require the sensor to output a 0 bit for 3 consecutive
time samples.

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 30, Publication date: November 2009.

30:28 • N. Shrivastava et al.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 1000 2000 3000 4000 5000 6000 7000

M
a
x
im

u
m

 E
rr

o
r

in
 V

e
lo

c
it
y

Density (rho)

Grid
Random

Theoretic curve: 1/rho^2

Fig. 14. Accuracy of velocity estimation vs. sensor density.

We generated a variety of geometric trajectories, simulated the sensor out-
puts using our non-ideal sensing model, and ran OCCAMTRACK, PARTICLE-FILTER,
and PARTICLE-FILTER with geometric post-processing, which we call PARTICLE FIL-
TER + GEOMETRIC. A sample trajectory, along with the outputs of the three algo-
rithms, is shown in Figure 15.

As expected, the ideal algorithm OCCAMTRACK performs poorly when the data
are imperfect: such data lead to gaps in the sequence of localization patches and
infeasible localization arcs. In our implementation, we simply ignored these ge-
ometric inconsistencies, and just computed the piecewise linear paths using the
rest of the arcs. Of course, in the worst case, poor data can completely break
OCCAMTRACK, but we found that the algorithm recovers rather well from these
bad situations and produces acceptable trajectories, although not nearly as
good as in the ideal case. In fact, compared to PARTICLE-FILTER, the output of
OCCAMTRACK looks significantly worse: it has significantly more pronounced
turns and twists. PARTICLE-FILTER seems much better at dealing with noisy
data, but its drawback is that, like any sample-b ased scheme, it produces
trajectories with many vertices. This is where our combination of PARTICLE-
FILTER with geometric postprocessing achieves the best of both worlds: it com-
bines the robustness of PARTICLE-FILTER with the economic paths of the ideal
OCCAMTRACK.

Figure 15 shows the output trajectories generated by the three techniques,
and Table I are the statistics of the output. As a sample result, for track C1,
PARTICLE-FILTER + Geometric uses 10 segments and has maximum error of 1.73,
compared to 51 segments required for the PARTICLE-FILTER for the error of 1.19.
We simulated this experiment over several trajectories, using the non-ideal
sensing, and observed the same trend. On a typical input, the maximum local-
ization error using PARTICLE-FILTER + Geometric was comparable to the basic
particle filter algorithm, but in the worst-case it was almost 50% higher. On
the other hand, the path description computed by PARTICLE-FILTER + Geometric
was at least a factor of 5 smaller.

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 30, Publication date: November 2009.

Target Tracking with Binary Proximity Sensors • 30:29

(a) Track C1 (b) Track C2 (c) Track C3

Fig. 15. Outputs of the tracking algorithms on nonideal input. Figure shows input tracks (top row),
OCCAMTRACK (second row), PARTICLE-FILTER (third row), and PARTICLE-FILTER + Geometric (bottom
row).

6. MOTE EXPERIMENTS

Finally, we set up a small lab-scale experiment using acoustic sensors to
evaluate the performance of our algorithms. The setup consisted of 16 MICA2
motes arranged in a 4 × 4 grid with 30 centimeter separation, as shown in
Figure 16. The motes were equipped with a MTS310 sensor board, which has
an acoustic sensor and a tone detector circuit. (The tone detector can detect
acoustic signals in a specific frequency range.) We adjusted the gain of the
sound sensor so that the detection range for each sensor is about 45 cm. The
target is also a MICA2 equipped with MIB310, which generated the acoustic
signal using its on-board beeper. The target is then moved through the network
in a path (shown as the dotted trajectory in Figure 17).

We first performed some experiments with a stationary target to determine
the detection characteristics of the motes’ tone-detector. The readings from the
motes turned out to be highly non-ideal. Not only did the motes make frequent

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 30, Publication date: November 2009.

30:30 • N. Shrivastava et al.

Table I. Comparison of Target Tracking Algorithms

PARTICLE-FILTER

Track PARTICLE-FILTER + Geometric OCCAMTRACK

Size Error Size Error Size Error
C1 51 1.19 10 1.73 33 2.36
C2 51 1.89 6 1.79 47 3.54
C3 51 1.73 8 1.49 34 1.67
C4 51 1.34 14 1.97 35 1.55
C5 51 1.00 6 1.71 35 1.77
C6 51 2.26 24 1.89 49 2.14
C7 51 1.30 22 2.13 45 2.17
C8 51 1.10 8 1.17 33 1.67

Fig. 16. The setup for our acoustic motes experiment.

detection errors, but the probability of detecting a target was not a monotonic
function of the distance from the sensor, as shown in Figure 18. While this
detection behavior is difficult to model, it also means that this experiment is a
good test for the robustness of our tracking algorithms.

The results of our experiment are shown in Figure 17. The detection readings
we collection from these experiments showed a lot of non-ideal behavior. The
most extreme being that one of the sensors, shown as double circle in the figure,
failed to detect the target entirely, even though the target came very close to it.

On the whole, however, even in presence of such extreme failures, the re-
sults are very encouraging. All three algorithms were able to give a reason-
able estimate of the target track. Figure 17(a) shows the reference output for
OCCAMTRACK, assuming ideal sensing—that is, assuming the faulty sensor had
also detected correctly, this is the trajectory OCCAMTRACK would produce. The
other three figures show the outputs using the actual measurements from the
acoustic sensors. (The actual path of the target is shown as a dotted line, while
the estimated trajectories are shown in bold lines.) As expected, the trajec-
tory quality of OCCAMTRACK suffers the most because of the failed sensor. The
PARTICLE-FILTER does better, and again the combined algorithm preserves the
robustness of PARTICLE-FILTER and approaches the minimal path description of
OCCAMTRACK.

7. CLOSING REMARKS

We have identified the fundamental limits of tracking performance possible
with binary proximity sensors, and have provided algorithms that approach

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 30, Publication date: November 2009.

Target Tracking with Binary Proximity Sensors • 30:31

(a) OccamTrack ()laedi(b) OccamTrack

(c) Particle Filter (d) Particle Filter + Geometric

Fig. 17. The output trajectories for the experiment using acoustic sensors.

Fig. 18. Probability of target detection with distance for an acoustic sensor.

these limits. The results show that the binary proximity model, despite its
minimalism, does indeed provide enough information to achieve respectable
tracking accuracy, assuming that the product of the sensing radius and sensor
density is large enough. Thus, this model can serve as a building block for
broadly applicable and reusable tracking architectures.

The promising results obtained here and in Kim et al. [2005], as well as the
success of the large-scale deployment in Arora et al. [2004], motivate a more
intense investigation of tracking architectures based on the binary proximity
model.

We would also like to develop minimal modifications of the basic tracking
architecture to incorporate additional information (e.g., velocity, distance) if

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 30, Publication date: November 2009.

30:32 • N. Shrivastava et al.

available. The particle filtering framework appears to be a promising means
for achieving this. Recent work indicates that a particle filtering approach can
also be used to track multiple targets [Singh et al. 2007] using binary sensors.
In addition to extensions and implementation optimization of this framework,
an interesting question is whether it is possible to embed Occam’s razor criteria
in the particle filtering algorithm, rather than using geometric post-processing
to obtain economical path descriptions.

Important issues for further investigation include the effect of uncertainty in
sensor location, and the effect of imperfect time synchronization across sensors.
For example, it would be interesting to explore whether it is possible to develop
an iterative estimation framework for joint sensor localization, synchronization
and target tracking.

ACKNOWLEDGMENTS

We are grateful to Kim et al. [2005] for giving us access to their target tracking
code. We also appreciate the helpful comments provided by the anonymous
reviewers.

REFERENCES

AGARWAL, P. AND SHARIR, M. 2000. Arrangements and their applications. In Handbook of Com-
putational Geometry, J.-R. Sack and J. Urrutia Eds. North-Holland, Amsterdam, Netherlands,
Chapter 2, 49–119.

AGARWAL, P. K., HAR-PELED, S., MUSTAFA, N. H., AND WANG, Y. 2005. Near-linear time approximation
algorithms for curve simplification. Algorithmica 42, 203–219.

ARORA, A., DUTTA, P., BAPAT, S., KULATHUMANI, V., ZHANG, H., NAIK, V., MITTAL, V., CAO, H.,
DEMIRBAS, M., GOUDA, M., CHOI, Y., HERMAN, T., KULKARNI, S., ARUMUGAM, U., NESTERENKO, M., VORA,
A., AND MIYASHITA, M. 2004. A line in the sand: a wireless sensor network for target detection,
classification, and tracking. Comput. Netw. 46, 5, 605–634.

ASLAM, J., BUTLER, Z., CONSTANTIN, F., CRESPI, V., CYBENKO, G., AND RUS, D. 2003. Tracking a moving
object with a binary sensor network. In Proceedings of the ACM International Conference on
Embedded Networked Sensor Systems (SenSys).

CHELLAPPA, R., QIAN, G., AND ZHENG, Q. 2004. Vehicle detection and tracking using acoustic and
video sensors. In Proceedings of the IEEE Conference on Acoustics, Speech, and Signal Processing.
Vol. 3. iii–793–6.

COATES, M. 2004. Distributed particle filters for sensor networks. In Proceedings of the Interna-
tional Symposium on Information Processing in Sensor Networks (IPSN). 99–107.

DOUCET, A., GODSILL, S., AND ANDRIEU, C. 2000. On sequential Monte Carlo sampling methods for
bayesian filtering. Stat. Comput. 10, 3, 197–208.

ELSON, J., GIROD, L., AND ESTRIN, D. 2002. Fine-grained network time synchronization using ref-
erence broadcasts. SIGOPS Oper. Syst. Rev. 36, 147–163.

FOX, D., THRUN, S., BURGARD, W., AND DELLAERT, F. 2001. Particle filters for mobile robot localization.
In Sequential Monte Carlo Methods in Practice, A. Doucet, N. de Freitas, and N. Gordon Eds.
Springer, Berlin.

GUIBAS, L., HERSHBERGER, J., MITCHELL, J., AND SNOEYINK, J. 1991. Approximating polygons and
subdivisions with minimum link paths. In Proceedings of the International Symposium on Algo-
rithms and Computation (ISAAC).

HALL, P. 1988. Introduction to the Theory of Coverage Processes. John Wiley and Sons.
KETCHAM, S., MORAN, M., LACOMBE, J., GREENFIELD, R., AND ANDERSON, T. 2005. Seismic source model

for moving vehicles. IEEE Trans. on Geosci. Rem. Sens. 43, 2, 248–256.
KHAN, Z., BALCH, T., AND DELLAERT, F. 2003. Efficient particle filter-based tracking of multiple inter-

acting targets using an MRF-based motion model. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems. Vol. 1. 254–259.

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 30, Publication date: November 2009.

Target Tracking with Binary Proximity Sensors • 30:33

KHAN, Z., BALCH, T., AND DELLAERT, F. 2005. MCMC-based particle filtering for tracking a variable
number of interacting targets. IEEE Trans. Patt. Anal. Mach. Intell. 27, 11, 1805–1819.

KIM, W., MECHITOV, K., CHOI, J.-Y., AND HAM, S. 2005. On target tracking with binary proximity
sensors. In Proceedings of the International Symposium on Information Processing in Sensor
Networks (IPSN).

KUHN, F. AND ZOLLINGER, A. 2003. Ad-hoc networks beyond unit disk graphs. In Proceedings of the
International Conference on Mobile Computing and Networking.

LIU, J., CHEUNG, P., GUIBAS, L., AND ZHAO, F. 2004. Apply geometric duality to energy efficient
non-local phenomenon awareness using sensor networks. IEEE Wirel. Commun. Mag. 11, 62–68.

MCERLEAN, D. AND NARAYANAN, S. 2002. Distributed detection and tracking in sensor networks. In
Proceedings of the 36th Asilomar Conference on Signals, Systems and Computers. Vol. 2. 1174–
1178.

MEESOOKHO, C., NARAYANAN, S., AND RAGHAVENDRA, C. S. 2002. Collaborative classification appli-
cations in sensor networks. In Proceedings of the Workshop on Sensor Array and Multichannel
Signal Processing. 370–374.

MUDUMBAI, R. AND MADHOW, U. 2008. Information theoretic bounds for sensor network localization.
In Proceedings of the IEEE International Symposium on Information Theory (ISIT).

RAM, S. S., MANJUNATH, D., IYER, S. K., AND YOGESHWARAN, D. 2007. On the path coverage properties
of random sensor networks. IEEE Trans. Mob. Comput. 6, 5, 446–458.

RAO, B. S. Y., DURRANT-WHYTE, H. F., AND SHEEN, J. A. 1993. A fully decentralized multi-sensor
system for tracking and surveillance. Int. J. Rob. Res. 12, 1, 20–44.

SABATINI, A. M., GENOVESE, V., GUGLIELMELLI, E., MANTUANO, A., RATTI, G., AND DARIO, P. 1995. A low-
cost, composite sensor array combining ultrasonic and infrared proximity sensors. In Proceedings
of the International Conference on Intelligent Robots and Systems. Vol. 3. 120–126.

SAVVIDES, A., HAN, C.-C., AND STRIVASTAVA, M. B. 2001. Dynamic fine-grained localization in ad-hoc
networks of sensors. In Proceedings of the Annual International Conference on Mobile Computing
and Networking (MobiCom) . 166–179.

SAYINER, N., SORENSEN, H., AND VISWANATHAN, T. 1996. A level-crossing sampling scheme for a/d
conversion. IEEE Trans. Circ. Syst. 43, 4, 335–339.

SINGH, J., MADHOW, U., KUMAR, R., SURI, S., AND CAGLEY, R. 2007. Tracking multiple targets using
binary proximity sensors. In Proceedings of the 6th International Conference on Information
Processing in Sensor Networks (IPSN’07). ACM, 529–538.

WANG, Z., BULUT, E., AND SZYMANSKI, B. K. 2008. A distributed cooperative target tracking with
binary sensor networks. In Proceedings of the IEEE International Conference on Communications
(ICC) Workshops, 306–310.

Received November 2007; revised July 2008; accepted November 2008

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 30, Publication date: November 2009.

