
Systems & Control Letters 58 (2009) 7–16
Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

A continuous time linear adaptive source localization algorithm, robust to
persistent drift
Sandra H. Dandach a, Barış Fidan b, Soura Dasgupta c,∗, Brian D.O. Anderson b
a Department of Mechanical and Environmental Engineering, University of California, Santa Barbara, CA 93106, USA
b Australian National University, and National ICT Australia Ltd, Locked Bag 8001, Canberra ACT 2601, Australia
c Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA 52242, USA

a r t i c l e i n f o

Article history:
Received 9 May 2006
Received in revised form
18 June 2008
Accepted 17 July 2008
Available online 20 August 2008

Keywords:
Source localization
Adaptive
Continuous time
Estimation
Persistent excitation

a b s t r a c t

The problem of source localization has assumed increased importance in recent years. In this paper, we
formulate a continuous time adaptive localization algorithm, that permits a mobile agent to estimate the
location of a stationary source, using only themeasured distance from the source. The algorithm is shown
to be exponentially asymptotically stable, under a persistent excitation condition that has an appealing
interpretation. We quantify the fact that exponential asymptotic stability endows the algorithmwith the
ability to track slow, bounded but potentially persistent and nontrivial drift in the source.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Over the last few years the problem of source localization has
assumed increasing significance, [1]. It refers to an agent estimat-
ing the precise location of a source, using information related to
the relative position of the agent and the source. This information
can be of different kinds, for example distance, bearing, power level
(which is indirectly related to distance) and time difference of ar-
rival information, where two agents are involved. In this paper, we
will focus on distance estimates only. Examples where source local-
ization is important are many. Thus a base station in a cellular net-
work may have to estimate the location of a phone in its region of
coverage. In sensor networks, groups of sensors may have to esti-
mate the location of an object or a node to facilitate routing, rescue,
target tracking and proper network coverage.
We note that such distances can be estimated through two

possible means. The first, passive measurement, involves a source
that emits a signal and the signal intensity at the point of arrival at
the agent location, togetherwith characteristics of the propagation
medium provides a distance estimate. Alternatively, in active
distance measurements an agent transmits signals, and estimates
the distance bymeasuring the time it takes for this signal reflected
off the source to return.
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There are two research thrusts in this area. In the first,
clusters of stationary agents collaborate to localize a source. In
two dimensions this would generically require that at least three
distinct non-collinearly situated agents use their distances from
the source they seek to localize. To be precise, with just two
agents, the source position can be determined to within a binary
ambiguity. Occasionally, a priori information may be available
which will resolve that ambiguity. Otherwise, a third agent needs
to be involved. In three dimensions, one generically needs at least
four agents that do not lie on the same two dimensional plane.
Several papers have proposed collaborative localization algorithms
under a variety of assumptions concerning the manner in which
distances are estimated, [2–6]. In the second thrust a single mobile
agent, exploits its motion to localize, [7,8].
This paper is in the second category. It would seem relatively

straightforward to achieve localization of a source with a mobile
agent: one simply needs to take one distance measurement,
move the agent, take another distance measurement, and then
move it again to a position that is not collinear with the first
two, and take a third measurement (and in three dimensions,
a fourth measurement after another move). However, there are
disadvantages to this, principally stemming from the fact that
measurements are likely to be contaminated by noise, and from
the fact that the source may move while the agent is moving
to its new position. To address these concerns, we formulate
a continuous time algorithm, that adaptively localizes a source
through known agent motion, in three dimensions. As noted, the
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first motivation for adaptation, as opposed to a stand-alone batch
algorithmstems from theneed to achieve robust localization, given
noisy measurements. A more sophisticated argument will be used
to show that we can localize not only stationary sources, but also
those that undergo slow, but possibly persistentmovements, albeit
with some error.
In Section 2 we formulate a continuous time algorithm

that achieves exponentially fast localization of a stationary
source, under a persistent excitation (p.e.) condition on the
path of the moving agent. To understand the significance of
this algorithm, we shall argue in Section 2 that in continuous
time, distance measurements together with their derivatives,
should suffice under the right conditions to secure source
localization. However, while distance measurements are directly
available, their derivatives are not. Nor is it desirable to perform
explicit differentiation, as poor noise performance will ensue.
The algorithm of this paper avoids such explicit differentiation,
and thus localizes without noise amplification. In Section 3 we
show that this algorithm can track a source experiencing slow,
bounded but potentially persistent drift. In Section 4 we provide
an intuitively appealing interpretation of the p.e. condition of
Section 2. Section 5 provides simulation results, which among
other things reveal a tradeoff between the ability to track a
nonstationary source, with smooth noise performance. Section 6
is the conclusion. A conference version of this paper is [15].

2. The localization algorithm

We deal with a source positioned at a location whose
coordinates in three dimensions are in a vector x ∈ R3. An agent
whose coordinates at time t are in a vector y(t) ∈ R3, must
estimate x from the knowledge of its own position over t ∈ [0,∞)
and its distance from the source

d(t) = ‖y(t)− x‖ , (2.1)

also over t ∈ [0,∞). Here, as in the rest of the paper, all
norms refer to the 2-norm. In the sequel the following standing
assumption will hold:

Assumption 2.1. The agent trajectory y : R → R3, is twice
differentiable. Further, there existsM0 > 0, such that

∀t ∈ R: ‖y(t)‖ + ‖ẏ(t)‖ + ‖ÿ(t)‖ ≤ M0.

This assumption ensures that the motion of the agent can be
executed with finite force.
Now observe that with x ∈ R3 under Assumption 2.1 and (2.1)

one obtains,

∀t ∈ R:
d
dt
{d2(t)} = 2ẏ(t)T(y(t)− x). (2.2)

Thus, if the derivatives of d(·) and y(·) be available over an
interval [0, T ], and the velocity trajectory ẏ(·) span R3 over [0, T ],
the sensor location x can be estimated. Pursuing such an approach
in practice however, would require explicit differentiation of
measured signalswith accompanying noise amplification. To avoid
such explicit differentiation, we invoke instead, the device of state
variable filtering, popularly employed in the adaptive systems
literature, [9]. A novelty of our approach lies in the fact that
while in the adaptive systems literature state variable filtering has
generally involved signals that are linearly related, in this context
the underlying relationships are nonlinear.
Indeed we consider the signals η(·), m(·) and V (·), that

are respectively the state variable filtered versions of d2(·)/2,
‖y(·)‖2/2 and y(·). These are given in (2.3)–(2.8): For α > 0
generate, under assumption (2.1)

ż1(t) = −αz1(t)+
1
2
d2(t), z1(0) = 0, (2.3)

η(t) = −αz1(t)+
1
2
d2(t), (2.4)

ż2(t) = −αz2(t)+
1
2
yT(t)y(t), z2(0) = 0, (2.5)

m(t) = −αz2(t)+
1
2
yT(t)y(t), (2.6)

ż3(t) = −αz3(t)+ y(t), z3(0) = 0, (2.7)

and

V (t) = −αz3(t)+ y(t). (2.8)

Note that the generation of η(t), m(t) and V (t) requires simply
the measurements d(t) and the knowledge of the localizing
agent’s own position, and can be performed without explicit
differentiation.
In the sequel, we denote p as the derivative operator, i.e. p ,

d/dt . Then:

1
p+ α

{
1
2
d2(·)

}
=

∫
·

0
e−α(·−τ)

1
2
d2(τ )dτ

just as
p

p+ α

{
1
2
d2(·)

}
=

∫
·

0
e−α(·−τ)

d
dτ

{
1
2
d2(τ )

}
dτ .

Further for two functions a, b : R≥0 → R3 we say a(·) ≈ b(·), if
there exist λ,M > 0 such that for all t ≥ 0‖a(t)− b(t)‖ ≤ Me−λt .
Then we have the following key Lemma:

Lemma 2.1. Suppose Assumption 2.1 holds, x ∈ R3 is a constant, and
η(t), m(t) and V (t) are as defined in (2.3)–(2.8) with α > 0. Then
there holds:

η(·) ≈ m(·)− V T(·)x. (2.9)

Proof. An elementary calculation using (2.3) and (2.4), provides
the relationship:

η̇(t)+ αη(t) =
d
dt

{
1
2
d2(t)

}
.

Then as α > 0, in operator notation,

η(·) ≈
p

p+ α

{
1
2
d2(·)

}
. (2.10)

Similarly,

m(·) ≈
p

p+ α

{
1
2
yT(·)y(·)

}
, (2.11)

and

V (·) ≈
p

p+ α
{y(·)} . (2.12)

Then we establish the following key relationship between η(·),
m(·), V (·) and x that exploits the fact that x is a constant.

η(·) ≈
p

p+ α

{
1
2
d2(·)

}
≈

1
p+ α

{
ẏT(·)(y(·)− x)

}
≈

p
p+ α

{
1
2
yT(·)y(·)

}
−

(
p

p+ α

{
yT(·)

})
x

≈ m(·)− V T(·)x. �



S.H. Dandach et al. / Systems & Control Letters 58 (2009) 7–16 9
Observe that (2.9)mirrors (2.2), but involves only signalswhose
generation requires no explicit differentiation.Wenowpresent the
adaptive localization algorithm:With x̂(·) the estimate of x, choose
for a scalar adaptation gain, γ > 0:

˙̂x(t) = −γ V (t)(η(t)−m(t)+ V T(t)x̂(t)). (2.13)

Define

x̃(t) = x̂(t)− x. (2.14)

Then because of (2.9), (2.13) becomes:

˙̃x(·) ≈ − γ V (·)V T(·)x̃(·). (2.15)

Localization will require that x̃(·) converge to zero. We then have
the following theorem.

Theorem 2.1. Suppose Assumption 2.1 holds and x ∈ R3 is a
constant. Consider η(t), m(t) and V (t) defined in (2.3)–(2.8), with
α > 0. Then under (2.15) there exist ρ1, ρ2, λ > 0 such that for all
t ≥ 0 and ‖x(0)‖

‖x̃(t)‖ ≤ (ρ1‖x(0)‖ + ρ2) e−λt

if and only if there exist α1 > 0, α2 > 0, T > 0 such that for all
t ≥ 0

α1I ≤
∫ t+T

t
V (τ )V T(τ )dτ ≤ α2I. (2.16)

Proof. It is well known, see e.g. [10], that the linear time varying
system with γ > 0

ż(t) = −γ V (t)V T(t)z(t) (2.17)

is exponentially asymptotically stable iff (2.16) holds. Hence the
result follows. �

The condition (2.16) is the celebrated p.e. condition. In Section 4
we interpret it to show that it is in accord with intuition. Note
that it is well known in the adaptive systems literature [12] that
exponential convergence imparts robustness tomodest departures
from idealizing assumptions. Certainly itwill ameliorate the effects
of noise perturbing the distancemeasurements. In the next section
we show that in fact it also permits (2.13) to track slow, bounded
though possibly large and persistent drift in the source location.

3. Tracking drift

In view of Assumption 2.1, there exist Mi > 0, such that for all
t ∈ R,

‖y(t)‖ ≤ M1, ‖ẏ(t)‖ ≤ M2 and ‖ÿ(t)‖ ≤ M3. (3.1)

The analysis in the previous section assumeda stationary source
specifically by assuming that x, the source location, is a constant
vector. The fact that under the p.e. condition (2.16) the localization
algorithm is exponentially asymptotically stable, suggests the
possibility of coping with departures from idealizing assumptions.
One such departure of particular practical import is when the
assumption of a stationary source is dropped. Rather, the source
may experience slow, but persistent, drift that results in significant
movement from its original position. One notes that should this
drift eventually cease then the fact that under the conditions of
Theorem 2.1 convergence to this terminal position will occur, is
almost immediate. Instead we treat here the case that the source
potentially never ceases to move.
Specifically, we make the following assumption on source

motion.
Assumption 3.1. The source trajectory x : R → R3 is
differentiable and there exist M4 > 0 and ε > 0, such that for
all t ∈ R

‖x(t)‖ ≤ M4, (3.2)

and

‖ẋ(t)‖ ≤ ε. (3.3)

In this section we will further assume that ε in (3.3) is ‘‘small’’.
Observe that even though this assumption constrains the drift
in the source to be bounded and slow, the net extent of the
drift, i.e. the total change in x(t) over a large time interval, is
permitted to be substantial. We remark that the bound (3.2) is
also reasonable. Under Assumption 2.1, y(t) remains bounded
for all time. If (3.2) failed, then the distance measurements from
the agent to the source would be arbitrarily large, and possibly
along asymptotically parallel lines. In the limit, this is like having
collinear measurement points that fundamentally impair the
ability to localize without ambiguity.
Since the stationarity assumption on the source has now been

relaxed, (2.9) must also be accordingly modified. Indeed we have
the following lemma.

Lemma 3.1. Suppose Assumptions 2.1 and 3.1 hold, and η(t), m(t)
and V (t) are as defined in (2.3)–(2.8). Then there exists a signal M5 :
R≥0 → R≥0 such that for a suitable K1 depending only onM1, M2, M4
and α,

|η(t)−m(t)+ V T(t)x(t)| ≤ M5(t) ∀t ≥ 0, (3.4)

and

M5(·) ≈ K1ε. (3.5)

Proof. Using the operator notation introduced in the proof of
Lemma 2.1 one obtains,

η(·) ≈
p

p+ α

{
1
2
d2(·)

}
=

1
p+ α

{
(ẏ(·)− ẋ(·))T(y(·)− x(·))

}
=

p
p+ α

{
1
2
yT(·)y(·)

}
−

(
1

p+ α

{
ẏT(·)x(·)

})
− f (·)

≈ m(·)−
(
1

p+ α

{
ẏT(·)x(·)

})
− f (·) (3.6)

where we have used (2.11) and the definition

f (·) =
(
1

p+ α

{
ẋT(·)(y(·)− x(·))

})
. (3.7)

Thus because of Assumptions 2.1 and 3.1, there exists an F :
R≥0 → R≥0, such that for all t ≥ 0,

|f (t)| ≤ F(t) (3.8)

and

F(.) ≈
(M1 +M4)ε

α
. (3.9)

Focus now on the second term in (3.6). Observe now that

1
p+ α

{
ẏT(·)x(·)

}
≈ Q (·), (3.10)
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where with C ∈ R3,

Q (t) = e−αt
∫ t

0
eατ ẏT(τ )x(τ )dτ

= e−αt
[(∫ τ

0
eαsẏ(s)ds+ C

)T
x(τ )

]t
0

− e−αt
∫ t

0

(∫ τ

0
eαsẏ(s)ds+ C

)T
ẋ(τ )dτ

=

[(∫ τ

0
e−α(t−s)ẏ(s)ds+ Ce−αt

)T
x(τ )

]t
0

− G(t), (3.11)

where

G(t) = e−αt
∫ t

0

(∫ τ

0
eαsẏ(s)ds+ C

)T
ẋ(τ )dτ . (3.12)

Thus, as α > 0

Q (·) ≈ V T(·)x(·)− G(·). (3.13)

Further from (3.12) one obtains.

|G(t)| ≤ e−αtM2ε
[
eαt − 1
α2

+ t
(
‖C‖ −

1
α

)]
. (3.14)

Then the result follows from (3.4) to (3.14). �

Then in view of Theorem 2.1 we have the following result.

Theorem 3.1. Suppose Assumptions 2.1 and 3.1 hold, and there exist
α1, α2, T > 0 such that for all t ≥ 0 (2.16) holds. Consider
η(t), m(t) and V (t) defined in (2.3)–(2.8). Then x̂(t) given by (2.13)
obeys for some K obtained from M1, M2, M4, γ , α, T , α1 and α2,
lim supt→∞ |x̂(t)− x(t)| = Kε.

Proof. Because of (2.13) and (2.14) there holds

˙̃x(t) = ˙̂x(t)− ẋ(t)
= −γ V (t)(η(t)−m(t)+ V T(t)x̂(t))− ẋ(t)
= −γ V (t)V T(t)x̃(t)− γ V (t)(η(t)−m(t)
+ V T(t)x(t))− ẋ(t)

= −γ V (t)V T(t)x̃(t)+ G2(t),

where

G2(t) = −γ V (t)(η(t)−m(t)+ V T(t)x(t))− ẋ(t).

Then because of Lemma 3.1, (3.3) and the fact that V (·) is bounded,
There exists a K5 > 0 obtained from M1, M2, M4, γ and α, and
an M6 : R≥0 → R≥0, obeying M6(·) ≈ K5ε such that |G2(t)| ≤
M6(t)∀t ≥ 0. Hence the result follows from the exponential
asymptotic stability of (2.17). �

We note that K in Theorem 3.1 itself depends on the
convergence rate of (2.17), which according to [11] increases
linearly with α1 and declines quadratically with α2 and linearly
with T . Specifically, with γ as in (2.13), z(·) as in (2.17) and αi as in
(2.16), for all t , there holds

‖z(t + T )‖2 − ‖z(t)‖2

‖z(t)‖2
≤

4γα1
1+ γα2 + γ 2α22

.

What Theorem 3.1 shows is that under the p.e. condition in (2.16),
one can track sustained but bounded drift in the source provided
the drift is sufficiently slow, underscoring the robustness of the
proposed localization algorithm. In the next section we provide a
physical interpretation of this p.e. condition.
4. Persistent excitation

In this section, we explore the meaning of the p.e. condition
in (2.16). First, observe that in three dimensions, an agent cannot
generically localize without ambiguity if its motion is confined to a
plane, as therewould be at least two points separated by this plane
that may provide the same distance measurements. An exception
arises when there is an additional level of nongenericity in that not
only is the motion of the agent confined to a plane, but the source
lies in the same plane. Similarly in two dimensions generically the
motion cannot be exclusively collinear. Since the source location
is unknown; for all practical purposes planar agent motion in
three dimensions and collinear motion in two dimensions should
be avoided. In this section we quantify the relationship between
avoiding planar motion and satisfying (2.16).
To this end, we first relate the p.e. condition on V (·) to one

on ẏ(·), by exploiting techniques used to establish transfer of
excitation conditions developed in [13] for adaptive identification
and control problems. From (2.7) and (2.8), we have

V̇ (t)+ αV (t) = ẏ(t). (4.1)

We are interested in showing that (2.16) holds iff a p.e. condition
holds on ẏ(·). The transfer of excitation results of [13] do not
directly apply to this setting, as they involve scalar inputs, and
furthermore require that the system relating the two signals be
proper, which the V to ẏ system is not.
To prove this result we invoke the following specialization of an

inequality from [14], which has been used before in establishing
transfer of excitation relations in [13].

Lemma 4.1. Suppose on a closed interval I ⊂ R of length∆, a signal
w : I→ R is twice differentiable, and for some ε and M ′

|w(t)| ≤ ε1 and |ẅ(t)| ≤ M ′ ∀t ∈ I.

Then for some M independent of ε1, I and M ′, and M ′′ =
max(M ′, 2ε1∆−2) one has:

|ẇ(t)| ≤ M(M ′′ε1)1/2 ∀t ∈ I.

The upper bound of (2.16) holds because of Assumption 2.1 and
the stability of the state variable filters. We will thus focus on the
lower bound of (2.16). To this end we have the following theorem.

Theorem 4.1. Suppose Assumption 2.1 and (4.1) hold with arbitrary
V (0) ∈ R3. Then there exist α1, T > 0, such that the lower bound in
(2.16) holds for all t ≥ 0 if and only if there exist β1, T̄ > 0 such that
for all t ≥ 0

β1I ≤
∫ t+T̄

t
ẏ(τ )ẏ(τ )Tdτ . (4.2)

Proof. We will prove that the violation of one lower bound is
equivalent to the violation of the other.
Suppose the lower bound in (4.2) is violated. Then for all ε2 > 0

and T > 0, there exists a t0 and unit norm θ ∈ R3, such that∫ t0+T

t0
(θTẏ(τ ))2dτ ≤ ε22 .

Thus from Lemma 4.1 for some M7, all ε2 > 0, some T1(ε2),
dependent only on the bound on ÿ(·) and ε2, and all T > T1(ε2),
there exists a t0 and unit norm θ ∈ R3, for which∣∣θTẏ(t)∣∣ ≤ M7ε1/22 ∀t ∈ [t0, t0 + T ].

Thus because of (4.1),
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∣∣∣∣ ddt {θTV (t)} + αθTV (t)
∣∣∣∣ ≤ M7ε1/22 ∀t ∈ [t0, t0 + T ].

As α > 0 in (4.1), for every ε2 > 0, some K6 dependent only
on M7 and α, and a T2(ε2) dependent on M7, α and ε2, and all
T > max{T1(ε2), T2(ε2)},∣∣θTV (t)∣∣ ≤ K6ε1/22 , ∀t ∈ [t0 + T2(ε2), t0 + T ].

Since this holds for every ε2 > 0, there will exist a value of ε2
such that |θTẏ(t)ẏT(t)θ | < β1

T̄
for all t ≥ t0, which violates the

lower bound of (2.16). Hence the satisfaction of the constraint of
(2.16) ensures that (4.2) holds.
Now suppose that the lower bound in (2.16) is violated. Then

for all ε3 > 0 and T > 0, there exists a t0 and unit norm θ ∈ R3,
such that∫ t0+T

t0
(θTV (τ ))2dτ ≤ ε23 .

Thus from Lemma 4.1 for some M8, all ε3 > 0, some T3(ε3),
dependent only on the bound on V̇ (·) and ε3, and all T > T3(ε3),
there exists a t0 and unit norm θ ∈ R3, for which∣∣θTV (t)∣∣ ≤ M8ε1/23 , ∀t ∈ [t0, t0 + T ].

As ÿ(·) is bounded, so is V̈ (·). Thus again from Lemma 4.1 for some
L, all ε3 > 0, some T4(ε3), dependent only on the bounds on V̇ (·),
V̈ (·) and ε, and all T > T4(ε3), there exists a t0 and unit norm
θ ∈ R3, for which∣∣θTV̇ (t)∣∣ ≤ Lε1/43 , ∀t ∈ [t0, t0 + T ].

Consequently, because of (4.1)∣∣θTẏ(t)∣∣ ≤ αM8ε1/23 + Lε1/4, ∀t ∈ [t0, t0 + T ].
As before this violates the lower bound of (4.2). �

Let us now tie (4.2) to the avoidance of planar motion. Observe
that should in particular the Gramian in (4.2) be singular then,
because of Assumption 2.1 for some unit norm θ , θTẏ(t) = 0 for all
t . This in particular means that for this constant unit norm θ ∈ R3,
there exists a C1 ∈ R3 such that for all t , θTy(t) = C1 defining
a planar motion. The p.e. condition in (4.2) effectively requires
that the localizing agent avoid in some sense planar motion. In
particular we have the following tangible connection that among
other things allows the verification of the p.e. condition from y(t)
alone.

Theorem 4.2. Suppose Assumption 2.1 and (4.1) hold with arbitrary
V (0) ∈ R3. Then there exist α1, T > 0, such that the lower bound in
(2.16) holds for all t ≥ 0 iff there exist T̄ > 0 and β > 0 such that
for all t , there exist {t1, . . . , t4} ∈ [t, t + T̄ ], for which

|det ([y(t2)− y(t1), y(t3)− y(t1), y(t4)− y(t1)])| > β. (4.3)

Proof. Since y(·) is bounded because of Assumption 2.1, (4.3) is
equivalent to the requirement that for some β4 > 0 the smallest
eigenvalue of

[y(t2)− y(t1), y(t3)− y(t1), y(t4)− y(t1)]
× [y(t2)− y(t1), y(t3)− y(t1), y(t4)− y(t1)]T

must be greater than β4. Thus (4.3) is is equivalent to the
requirement that for some β4 > 0

4∑
i=2

(y(ti)− y(t1))(y(ti)− y(t1))T > β4I. (4.4)

In view of Theorem 4.1, we will focus on proving the equivalence
of (4.4) and the lower bound in the (4.2) condition. To prove that
the lower bound of (4.2) implies that of (4.4) we will show that
the violation of (4.4) implies the violation of the lower bound
of (4.2).
To this end we first assert that the violation of (4.4) in turn

implies the following: that for some ε∗, and every ε∗ > ε4 > 0
and T > 0, there exists a t0 > 0 and a unit norm θ ∈ R3, such
that

|θT(y(t)− y(t0))| ≤ ε4 ∀t ∈ [t0, t0 + T ]. (4.5)

A formal proof of this result is involved, and is omitted. Briefly,
it reflects the fact that if on a compact interval of time, all quartet
of samples of y(t) in R3 are close to being coplanar, then the entire
trajectory is close to the same plane on this interval.
Thus from Lemma 4.1 for some M9, ε∗ all ε∗ > ε4 > 0,

some T1(ε4), dependent only on the bound on ÿ(t) and ε4, and all
T > T3(ε4), there exists a t0 and unit norm θ ∈ R3, for which

|θTẏ(t)| ≤ M9ε
1/2
4 ∀t ∈ [t0, t0 + T ]

violating the lower bound of (4.2). Now suppose the lower bound
of (4.2) is violated. Then for every ε8 > 0 and T > 0, there exists a
t0 and a unit norm θ ∈ R3, such that∫ t

t0
(θTẏ(τ ))2dτ ≤ ε28 ∀t ∈ [t0, t0 + T ].

Thus from Lemma 4.1 for some M10, all ε8 > 0, some T4(ε8),
dependent only on the bound on ÿ(·) and ε8, and all T > T4(ε8),
there exists a t0 and unit norm θ ∈ R3, for which

|θTẏ(t)| ≤ M10ε
1/2
8 ∀t ∈ [t0, t0 + T ].

Now suppose (4.4) does hold with some finite T̄ . This leads to a
contradiction as for any t1 ≥ t0 + T4(ε8) and t1 ≤ t ≤ t1 + T̄ , one
has

|θT(y(t)− y(t1))| ≤ M10ε
1/2
8 T̄ . � (4.6)

Note that the determinant in (4.3) being zero, implies that y(ti) are
coplanar. The parameter β in (4.3) measures how close they are to
be situated on a plane. In effect this result shows that the p.e. condi-
tion can be verified by checkingwhether on each interval of a fixed
length, there are at least four time points at which the agent posi-
tions are sufficiently removed fromany single plane, specifically by
testing (4.3).
We now provide an informal analysis of what happens when

(2.16) is violated in the nongeneric situation, where the source
location is coplanarwith the agent trajectory. Suppose in particular
that y(·) lies on the same plane for all t ≥ 0, but avoids
sufficiently often and to a sufficient extent a collinear path.
Suppose also that for some scalar cV (0) = cẏ(0). Then of
course for a scalar a : R≥0 → R>0, uniformly bounded
away from zero, V (t) = a(t)ẏ(t). for all t . Consequently, even
though the Gramian in (2.16) is singular, its projection on the
two dimensional plane in which y(·) resides is uniformly positive
definite. Now suppose x̂(0) also resides on this plane and the
exponentially decaying terms in (2.9) are all zero. Then because
of (2.13), the localization error x̃(·) is confined to this plane for
all t ≥ t0, and cannot be orthogonal to the Gramian in (2.16).
Consequently, a simple projection argument combined with the
technique of [10] will show that localization will ensue at an
exponential rate. A similar argument can be advanced when the
agent executes a collinear motion along a line containing the
source. This by no means contradicts our earlier assertion that
the p.e. condition (2.16) is necessary for exponential asymptotic
localization, as there is at least one set of initial conditions, namely
involving initial errors that are orthogonal to the Gramian in
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Fig. 1. Location estimation for x = [2, 3, 2]T (m), y(t) = [2+ 2 sin t, 2 cos 2t, 2 sin 0.5t]T (m), α = 1. The dashed lines correspond to the actual coordinates of the source
and the solid curves show the estimate trajectories.
Fig. 2. Location estimation for x(t) = [2+ sin 0.005t, 3+ cos 0.005t, 2]T (m), y(t) = [2+ 2 sin t, 2 cos 2t, 2 sin 0.5t]T (m), α = 1. The dashed curves correspond to the
actual coordinates of the source and the solid curves show the estimate trajectories. Time scale 0–6000 s.
(2.16), which would correspond to false stationary points of the
algorithm.
Indeed suppose that the agent executes a planar, though

persistent noncollinear motion, and x is coplanar with y(·) for all
t ≥ 0. Then there exists an orthogonalmatrix A ∈ R3×3 for which
for all t ≥ 0

Ax =
[
0, x̄T

]T
, Ay(t) =

[
0, ȳT(t)

]T
, and

Aẏ(t) =
[
0, ˙̄y

T
(t)
]T
,

and there exist β1, β2, T̄ > 0 such that for all t ≥ 0

0 < β1I ≤
∫ t+T̄

t

˙̄y(τ ) ˙̄y(τ )Tdτ ≤ β2I. (4.7)
Here x̄ ∈ R2 and ȳ : R→ R2. Observe, in this case with V̄ : R→
R2,

AV (·) ≈
[
0, V̄ T(·)

]T
,

and there exist α1, α2, T > 0 such that for all t ≥ 0

0 < α1I ≤
∫ t+T

t
V̄ (τ )V̄ (τ )Tdτ ≤ α2I. (4.8)

The orthogonality of A ensures that with ¯̃x : R→ R2, and

Ax̃(t) =
[
x̃T1(t), ¯̃x

T
(t)
]T
,

(2.15) reduces to[
˙̃x1(·)
˙̄x̃(·)

]
≈ −γ AV (·)V T(·)AT

[
x̃1(·)
¯̃x(·)

]
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Fig. 3. Location estimation for x(t) = [2+ sin 0.005t, 3+ cos 0.005t, 2]T (m), y(t) = [2+ 2 sin t, 2 cos 2t, 2 sin 0.5t]T (m), α = 1. The dashed curves correspond to the
actual coordinates of the source, and the solid curves show the estimate trajectories. Time scale 0–600 s.
Fig. 4. Location estimation for x(t) = [2+ sin 0.05t, 3+ cos 0.05t, 2]T (m), y(t) = [2+ 2 sin t, 2 cos 2t, 2 sin 0.5t]T (m), α = 1. The dashed curves correspond to the
actual coordinates of the source, and the solid curves show the estimate trajectories. Time scale 0–600 s.
≈ −γ
[
0 0
0 V̄ (·)V̄ T(·)

] [
x̃1(·)
¯̃x(·)

]
. (4.9)

Should x̃1(0) = 0, i.e. the original estimate itself lie on the same
plane as the source and the agent, and one has that ẋ1(·) = 0, rather
than ẋ1(·) ≈ 0, then one will have the exponential convergence
of x̂(·) to x. On the other hand even if x̃1(0) = 0, and ẋ1(·)
is exponentially decaying, convergence cannot be guaranteed as
x̃1(·), may not converge to zero. Thus, generically, convergence is
only possible if the agent knows a priori that it is coplanar with the
source, and the state variable filters are initialized just the right
way. Similar conclusions can be drawn for collinear motion of an
agent collinear with the source.
5. Simulation results

In this section, we provide simulation results to demonstrate
the performance of the localization algorithm in Section 2. In these
examples, unless otherwise stated, the adaptation gain γ = 1.
First, consider a stationary source located at x = [2, 3, 2]T (m).

Assume that for all t ≥ 0, y(t) = [2+ 2 sin t, 2 cos 2t, 2 sin 0.5t]T
(m). Assume that the filter pole in (2.3)–(2.8) is α = 1. Then, using
the localization algorithm (2.13), we obtain the source localization
results shown in Fig. 1. As can be seen in Fig. 1, the source location
estimation est(x) = x̂ converges to its actual value x exponentially
fast.
Next, we consider the case where the source is moving around

a nominal location at x = [2, 3, 2]T (m) in particular for all
t ≥ 0, x(t) = [2+ sin 0.005t, 3+ cos 0.005t, 2]T (m). Observe
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Fig. 5. Location estimation for x = [2, 3, 2]T (m), y(t) = [2+ 2 sin t, 2 cos 2t, 2 sin 0.5t]T (m), α = 1. Noise in distance measurement with power .001 (m2). The dashed
lines correspond to the actual coordinates of the source, and the solid curves show the estimate trajectories.
Fig. 6. Location estimation for x = [2, 3, 2]T (m), y(t) = [2+ 2 sin t, 2 cos 2t, 2 sin 0.5t]T (m), α = 1. Noise in distance measurement with power .005 (m2). The dashed
lines correspond to the actual coordinates of the source, and the solid curves show the estimate trajectories.
that the net extent of the drift in the first two coordinates is 2,
and thus substantial. The rate of drift (i.e ε in Assumption 3.1),
on the other hand, is relatively small having an amplitude of
0.005. We expect from Theorem 3.1 that the agent will track the
source movement with an error proportional to 0.005. Assume
again that for all t ≥ 0, y(t) = [2+ 2 sin t, 2 cos 2t, 2 sin 0.5t]T
(m). Using the localization algorithm (2.13) with the same state
variable filter pole α = 1, we obtain the results shown in
Fig. 2, while Fig. 3 provides a snapshot of the intial tracking. The
estimate x̂(t) tracks the motion of x(t) with barely discernible
error. Fig. 4 demonstrates tracking when the rate of drift is
ten times that in Fig. 2, i.e. when for all t ≥ 0, x(t) =
[2+ sin 0.05t, 3+ cos 0.05t, 2]T (m). As expected, the tracking
though still quite good, is with a correspondingly larger error.
Now consider noise performance, specifically when the

distance measurements d(t) are perturbed by a zero mean
bandlimited white Gaussian noise. Figs. 5–7 consider the sta-
tionary source of the first example, and noise variance of
0.001 (m2), 0.005 (m2) and 0.1 (m2), respectively. While the first
two are with unity adaptation gains, the last is with a much re-
duced adaptation gain of 0.01. We note that a noise variance of
.001 (m2) corresponds to an average noise amplitude of about 0.03
(m), which given the scale of the problem in terms of the actual
distances involved, is quite reasonable. As expected in these two
examples the tracking error scales with the noise magnitude.
Fig. 7 reveals the role of the adaptation gain. Specifically, in

this example involving a very substantial noise, one finds that by
significantly reducing the adaptation gain, in this case to 0.01,
one significantly reduces the effect of noise in the long term
tracking error. The price is the much reduced convergence speed,
which of course impairs the ability to track source movements.
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Fig. 7. Location estimation for x = [2, 3, 2]T (m), y(t) = [2+ 2 sin t, 2 cos 2t, 2 sin 0.5t]T (m), α = 1. Noise in distance measurement with power 0.1 (m2) and adaptation
gain 0.01. The dashed lines correspond to the actual coordinates of the source, and the solid curves show the estimate trajectories.
Fig. 8. Location estimation for x(t) = [2+ sin 0.005t, 3+ cos 0.005t, 2]T (m), (m), y(t) = [2+ 2 sin t, 2 cos 2t, 2 sin 0.5t]T (m), α = 1. Noise in distance measurement
with power 0.001 (m2). The dashed lines correspond to the actual coordinates of the source, and the solid curves show the estimate trajectories.
This is to be expected, as a smooth noise performance requires
a slow adaptation response, while the ability to track fast source
movement requires fast adaptation. Nonetheless Fig. 8 shows
that these competing requirements can be reconciled when the
algorithmmust track a slowly drifting source in the face of modest
noise.

6. Conclusion

In this paper, we have presented a continuous time adaptive
source localization algorithm, that exploits an agent’s mobility to
localize a stationary source. Exponential asymptotic source local-
ization has been shown to require the satisfaction of a persistent
excitation condition, whose violation implies approximate planar
agent motion. Under persistent excitation, the algorithm is shown
to have the ability to track, slow, bounded but potentially persis-
tent and nontrivial drift. Further, this persistent excitation condi-
tion is independent of the source position, and requires only that
the agent avoid a planar motion sufficiently often and to a suffi-
cient level.
Future direction of research includes tracking a mobile source

that moves on a parameterized orbit, especially movement on
the surface of a sphere, and localization on a spherical surface.
Also of interest, is when active distance measurements are
undertaken with unknown source signal intensity, and unknown
characteristics of the broadcast medium.
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It is also known that in two dimensions, the noise vector
affecting three discrete measurements cannot have independent
entries, [5], but must lie on a manifold, the definition of
which includes the coordinates of the points from which the
measurements are taken, and the values of the measurements
themselves. Itmaybeworth one’swhile to explore the implications
of this fact in the face of continuousmeasurements, and indeed also
to three dimensions, in the hope that the resulting redundancy in
the noise profile can be exploited to enhance noise amelioration.
An explicit noise analysis is also warranted
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