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A Semidefinite Programming Approach to Source
Localization in Wireless Sensor Networks

Chen Meng, Student Member, IEEE, Zhi Ding, Fellow, IEEE, and Soura Dasgupta, Fellow, IEEE

Abstract—We propose a novel approach to the source local-
ization and tracking problem in wireless sensor networks. By
applying minimax approximation and semidefinite relaxation, we
transform the traditionally nonlinear and nonconvex problem
into convex optimization problems for two different source local-
ization models involving measured distance and received signal
strength. Based on the problem transformation, we develop a fast
low-complexity semidefinite programming (SDP) algorithm for
two different source localization models. Our algorithm can either
be used to estimate the source location or be used to initialize the
original nonconvex maximum likelihood algorithm.

Index Terms—Maximum likelihood estimation, semidefinite
programming, source localization, wireless sensor network.

1. INTRODUCTION

HE problem of locating a signal source using a wireless
Tnetwork of sensors has been addressed in several past
papers [1], [2] and references therein. One solution to this
problem applies weighted least squares (WLS) estimation
[3]-[5] that can be quite effective. However, the WLS approach
operates with a cost function that is nonconvex and subject
to local minima, thus requiring either smart initialization or
special conditions to ensure global convergence. To remedy
the local convergence problem, an algorithm based on the
concept of projection onto convex sets (POCS) has recently
been proposed in [6] and [7]. The POCS algorithm is very
effective in overcoming the local convergence problem when
the source resides within the convex hull of the sensor nodes.
Nevertheless, the POCS algorithm does suffer from poor per-
formance when trying to locate a source node not inside the
convex hull. In this work, we present a new approach to tackle
the local convergence problem that the WLS approach faces
and the problem with source outside the convex hull that the
POCS algorithm faces. By transforming the source localization
problem into a convex optimization problem using minimax
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approximation and semidefinite relaxation, we can find the
global minimum of the relaxed problem and do not need to
impose coverage conditions.

The application of semidefinite programming (SDP) in sensor
localization with noisy distance measurement and angle of ar-
rival has been studied by previous researchers, e.g., [8] and ref-
erences therein. Nevertheless, instead of minimizing the [ ! mea-
surement error, this work derives the SDP from the maximum
likelihood estimation and the minimax approximation. Another
important feature of our algorithm is that it can be applied to two
sensor measurement models. In other words, the SDP can be ap-
plied to the problem of measured distance with additive white
Gaussian noise and the problem of received signal strength with
lognormal fading.

Finally, the newly proposed SDP algorithm can be efficiently
implemented via a standard numerical optimization toolbox
such as SeDuMi [9]. The implementation also has very fast
convergence. Indeed, the computation complexity is polyno-
mial-time [10], with the worst-case scenario of O(m®?), where
m is the dimension of space in which sensors are placed. This
feature makes it appealing for resource-limited applications
and for tracking targets in real time.

II. PROBLEM STATEMENT

We now describe our problem formulation and basic assump-
tions. The known sensor positions are a set of m—dimensional
vectors X1, ...,Xy. The signal source location is an unknown
vector y. An source location estimate y is determined from
sensor measurements. In this letter, we only consider single
measurement from each sensor node. Nevertheless, our results
are readily applicable to cases involving multiple measure-
ments. We consider the following two measurement models.
Note that the major difference between the two models is the
different assumption of noise, and the scenarios can be found
in the referred literature.

A. Distance Measurement Model

In this common model [5], [11], the distance d; from source
to each sensor node is measured, i.e.,

d? = ||x; —y|* + ni, i=1,...,N (1)
where the noise n; isi.i.d. Gaussian with zero mean and variance
0. The conditional probability density is
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and the maximum likelihood estimate (MLE) of y is

N
N . 2
y= argmmz (dF — |Ixi — ylI*)". )
Y=
This model is less realistic in that n; cannot be truly Gaussian

as d? is nonnegative.

B. Signal Strength Measurement Model

If the source at y emits a signal of power P, the sensor at X;
can receive a signal power s;

si=Plxi -yl 3)
where [ is the path loss coefficient [12]. Under lognormal
fading, the received signal strength (RSS) in dB at a sensor can
be modeled as [7], [12], [13]

10log s; = 10log P — 108 1log(||x; — yIl) + n:  (4)

where the noise n; is assumed i.i.d. Gaussian with zero mean
and variance o2. The conditional probability density is
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and the MLE of y can be obtained as

N p 2
y = arg min Ins; —In <7>> . (@)
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III. OUR NEW EFFICIENT ALGORITHMS

A. Semidefinite Relaxation With Distance Measurement

The optimization problem of (5) involves high-order power
of y and is highly nonlinear and nonconvex. To simplify, we
propose a minimax approximation

& — |xi —y|?|. (6)

% .
= arg min max
y & i=1,2 N

1Ly

This approximation is supported by the so-called equivalence
between [? and [*° vector norms.
To proceed, define an (m + 1) x 1 vector y = [y? 1]7 and

I —X;
Xi = | _xT xI'x; |

K2

Then (6) can be written in an equivalent form

min ¢

st.y(m+1)=1, —t<yix;y—d?<t,i=1,....N
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By denoting Y = yy” and applying semidefinite relaxation
[10], [14], this problem can be reformulated into

min

s.t. —t < Trace(x;Y) —d? <t
i=1,2,...,N

Y>0, Y(m+1lm+1)=1 @)

where Y > 0 denotes (symmetric) positive semidefinite. Equa-
tion (7) is a convex optimization problem. Its global optimal so-
lution can be found using modern SDP solvers such as SeDuMi
[9] that applies the interior point method.

B. Semidefinite Relaxation for Received Signal Strength

We first reformulate the localization problem of (5) into a

minimax problem
P
m
(IIXi - YI|”> ‘
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We can show that this new optimization problem is less sen-
sitive to the path loss parameter 3. To do so, first note that from
(4), we have

y =argmin max |lns;

i=1,2...,N

= argmin ma
i=1,2

1=1,2...,

P . 10m/10

Si = w4 -
-yl

The minimum of the cost function in (8) assumes the value
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for a certain 7. The estimate y demonstrates insensitivity to the
path loss parameter in that for low noise n;, small perturbation
of (3 has little effect on the estimate of y. Particularly when in
noise-free cases, the minimum cost is independent of /3. This
is not the case for algorithms such as POCS in which g affects
the radius of a convex set. Empirically, 3 only represents the
average path-loss effect. In a practical environment, different
sensors may have significantly different values of 3, which is
a well-recognized drawback of applying the RSS signal model
when the path loss parameters vary. Hence, algorithms that are
insensitive to [ are generally desirable.
To find an efficient solution, first denote

S,L' 2/ ﬂ
- ()"
We transform (8) into its equivalent form

min ¢
st. yim+1)=1
—t <In(gllx; —y|]*) <t.i=1,2,...,N.
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Using the same relaxation technique as in the previous section,
we have the new problem as

min ¢
s.t. —t <In(g; - Trace(x;Y)) <t,i=1,2,....,.N (9
Y>>0, Y(m+1m+1) =1

To make first constraint in (9) more tractable, additional approx-
imations can be applied. First observe that Inz < 2z — 1. Thus,
a necessary condition for

—t < In(g; Trace(x;Y))

is

—t < g;Trace(x;Y) — 1.

We therefore have two necessary conditions

1—t < ¢;Trace{x; Y}
0 < Trace{x;Y}.

Because both Y and x; are symmetric positive semidefinite

Trace{x; Y} > 0

is guaranteed and becomes redundant. Now consider the right-
hand side of the first constraint

In(g; Trace{x,;Y}) < t.

‘We have a sufficient condition

In(g; Trace{x;Y}) < ¢;Trace{x, Y} -1 < t.

To summarize, we transform (9) into an approximation
min ¢
st.—t < ¢ -Trace(x;Y)—-1<t,i=1,2,...,N
Y>>0, Y(m+1lm+1)=1.
(10)

The optimization problem in (10) can now be solved using stan-
dard SDP tools. Note that, in general, semidefinite relaxation in-
creases the problem size, and some postprocessing techniques
are required to convert the SD relaxation solution Y into an ap-
proximate solution of the original optimization problem in terms
of ¥. Such standard techniques have been routinely applied in
signal processing and communications [14], [15].

IV. SIMULATIONS

We provide two examples for performance comparison.

Example 1: Consider the distance measurement model. Sen-
sors are located in 2-D at x; = [2,2]T,xy = [2,6]T,x3 =
[6,2]T. The source is first placed at y = [0,0]7 (outside the
convex hull formed by the sensors) and later placed at y =
[3,3]T (inside the convex hull). Note that when the source is
outside the convex hull, the POCS performance is generally bad
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Fig. 1. The 2-D simulation results based on the measured distance model.
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Fig. 2. The 3-D results under the received signal strength model.

because the intersection of convex sets is quite large, giving
rise to many potential solutions. Also note that in this case, a
spurious stationary point y’ = [6,6]7 is locally stable, when
solving the maximum likelihood estimation using gradient de-
scent methods [5]. In Fig. 1, we compare the estimation results
of POCS and SDP for the two different source locations. The re-
sults are given as the mean-squared error of the estimate versus
standard deviation of the noise, averaged over 3000 Monte Carlo
tests. Good estimation is demonstrated consistently for the SDP
method, while POCS fails to locate the source consistently.

Example 2: We now consider the RSS model. We set
P = 1000,8 = 3, and distribute five sensors in 3-D at
x; = [1,0,0]7,x = [0,2,0]7,x3 = [-2,-1,0",x4 =
[0,0,2]T,x5 = [0,0,—1]T. We first put the true source at
y = [-1,1,1]T (outside the convex hull of sensors) and then at
y = [0,0,0]7 (inside the convex hull). In both cases, the SDP
algorithm provides consistently good estimates while POCS
works well for the second source but fails to locate the first one.
The results are illustrated in Fig. 2.
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V. CONCLUSION

We propose a novel approach to the source localization
problem in wireless sensor networks. Our algorithm relies on
the concept of minimax approximation to the optimal max-
imum likelihood estimation, and it takes the form of an efficient
semidefinite programming. We study two different measure-
ment models for source localization and present well-posed
solutions in both cases. We present simulation examples that
demonstrate the good performance and consistency of the new
SDP algorithms. Our algorithm is also less sensitive to inac-
curacy in the path loss factor of the RSS model. The proposed
SDP estimate can serve either as a standalone solution or as
an initialization to the more complex maximum likelihood
algorithms.
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