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Circumnavigation Using Distance
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Abstract—Consider an agent A at an unknown location, under-
going sufficiently slow drift, and a mobile agent B that must move
to the vicinity of and then circumnavigate A at a prescribed dis-
tance from A. In doing so, B can only measure its distance from A,
and knows its own position in some reference frame. This paper
considers this problem, which has applications to surveillance and
orbit maintenance. In many of these applications it is difficult for B
to directly sense the location of A, e.g. when all that B can sense is
the intensity of a signal emitted by A. This intensity does, however
provide a measure of the distance. We propose a nonlinear periodic
continuous time control law that achieves the objective using this
distance measurement. Fundamentally, a) B must exploit its mo-
tion to estimate the location of A, and b) use its best instantaneous
estimate of where A resides, to move itself to achieve the circum-
navigation objective. For a) we use an open loop algorithm formu-
lated by us in an earlier paper. The key challenge tackled in this
paper is to design a control law that closes the loop by marrrying
the two goals. As long as the initial estimate of the source location is
not coincident with the intial position of B, the algorithm is guaran-
teed to be exponentially convergent when A is stationary. Under the
same condition, we establish that when A drifts with a sufficiently
small, unknown velocity, B globally achieves its circumnavigation
objective, to within a margin proportional to the drift velocity.

Index Terms—Nonlinear periodically time varying (NLPTV)
algorithm.

I. INTRODUCTION

I N surveillance and orbiting missions it is often desirable to
monitor a target by circumnavigating it from a prescribed

distance. In recent years this problem has been addressed in the
context of autonomous agents, where an agent or a group of
agents accomplish the surveillance task. Most of these studies
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are for the case where the position of the target is known and the
agent can measure specific information about the target, such
as the distance of the target or power, angle of arrival, time
difference of arrival, of signals emitted by the target, etc. See
[1]–[6] and references therein. However, in many situations, the
assumption of knowing the position of the target is not always
practical, e.g. if one wants to find and monitor the source of an
electromagnetic signal at an unknown location. This paper ad-
dresses the problem where the position of the target, e.g. signal
source, is unknown and the source might be undergoing a slow
and potentially nontrivial drift; only one agent is involved in
monitoring this target; and the only information continuously
available to the agent is its own position and its distance (not
relative position) from the target. Another work that considers a
similar problem to this paper is [7], where the same circumnav-
igation problem is considered with bearing, rather than distance
measurements.

Circumnavigating a target at an unknown position at first
seems trivial to accomplish. One simply needs three distance
measurements in from noncollinear points, or four in
from noncoplanar points, at different time instants to estimate
the position of the target, and then one can apply a simple control
law to start rotating around the estimated position of the target.
However, this approach has two main disadvantages. First, it
will not be robust to any noise corrupting the distance measure-
ments. Second the target may move between consecutive mea-
surements and indeed after the final measurement. At a min-
imum, such a “once only estimation approach” cannot cope with
sustained drift in the target. In this paper we propose a con-
tinuous time nonlinear periodically time varying (NLPTV) al-
gorithm that adaptively estimates the position of the target and
moves the agent to a trajectory encircling it.

To be specific, for a stationary target, this algorithm achieves
the circumnavigation objective effectively globally and expo-
nentially fast. By effective global convergence we mean that
convergence is guaranteed as long as the initial estimate of the
target location differs from the initial position of the circumnav-
igating agent, a condition that is easy to satisfy. When the target
moves with a sufficiently small albeit unknown and not neces-
sarily constant velocity, even if the drift persists indefinitely, the
circumnavigation objective is accomplished, again effectively
globally, to within an error that is proportional to the maximum
target speed. A qualitative description of how small a velocity
is small enough is provided.

A. Context of This Paper

Most papers for meeting distance specifications assume the
knowledge of the target position. Since distances are nonlinear
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functions of relative positions, the resulting control laws are
nonlinear and only locally stable, e.g. [8]. On the other hand
our circumnavigation objective also involves meeting distance
specifications and must thus require a nonlinear control law. In
our case the nature of the required nonlinearity is compounded
by the fact that only distance, as opposed to position measure-
ments, are available to guide control action. Despite this, the
control law we propose is effectively globally stable.

In a series of papers Cao and Morse [9]–[11] using concepts
from switched adaptive control, do consider the case where an
agent must move itself to a point at a pre-set distance from three
sources with unknown position in the plane, using distance mea-
surements. This is clearly a different problem to that consid-
ered here, albeit one which requires some form of dual control
for its solution. At least in concept these algorithms are glob-
ally stable. They entail however, the repeated online solution of
complicated optimization problems that are either nonconvex,
or are reducible to eight separate convex problems, that still de-
mand complicated computations. By contrast our algorithm is
computationally simple and requires no such optimization. Ad-
ditionally, unlike [9]–[11] our algorithm provably copes with a
drifting target. Our method also provides a natural platform to
investigate the case where a group of agents is required to take
up a circular formation around a target, perhaps with specified
angular spacing. Thus in a sense apart from tackling a problem
that is important in its own right, this paper demonstrates the fea-
sibility of devising computationally simple effectively globally
stable robust control laws that meet distance based objectives
using only distance measurements.

As noted in the foregoing other papers on circumnavigation
fall into two categories. In the first the position of the target
is assumed known, and relative positions are used to effect
circumnavigation. In the second, bearing information is used.
Both require more sophisticated sensors than those for mea-
suring received signal strength, in turn sufficient to provide
distance information. This does, however, require a callibration
of the signal strength emitted by the target. While at first
sight it may appear that our algorithm requires the absolute
position of the agent, it does so only in the reference frame of
the agent’s choosing. Thus effectively our algorithm also uses
relative position information, in this case indirectly provided
by distance measurements.

B. Approach and Challenges

The algorithm we formulate executes two steps simultane-
ously. The first, called the localization step uses the distance
measurement to generate an estimate of the target location. The
second, the control step, treats this estimate as the true location
and circumnavigates the estimated position.

The underlying philosophy is akin to certainty equivalence.
Specifically, if the localization step leads to an estimate that ex-
ponentially converges to the true target location, and the control
step forces the agent to exponentially meet the circumnavigation
objective around the location estimate, then the overall circum-
navigation objective around the true target position should be
exponentially met.

The challenge of this paper is not in the localization step,
which is borrowed from [12]. Rather the nontrivial novelty is

in the formulation of a control step that interacts with the algo-
rithm in [12] to achieve the overall circumnavigation objective.
In particular, [12], does not close the loop so to speak as its algo-
rithm has no control objectives, and is driven solely by the need
to localize. As such, [12] assumes that the agent can move as it
pleases. Consequently the convergence proof of the localization
algorithm given in [12], is trivial, following standard adaptive
systems analysis techniques, [13].

A necessary and sufficient condition for exponential localiza-
tion given in [11], is a persistent excitation (p.e.) condition that
requires the agent to move in a trajectory that is not confined
to a straight line in two dimensions and to a plane in three di-
mensions. Further, this avoidance of collinear/coplanar motion
must be persistent in a sense described in [12]. In part this means
that the agent cannot simply head straight towards the target but
must execute a richer class of motion. There is a need to recon-
cile the p.e. requirement with the circumnavigation objective.
Thus the first challenge of this paper is to devise a control law
that forces the agent to execute a motion that satisfies the p.e.
condition while still achieving the control objective.

The second challenge is to prove convergence in this closed
loop setting even when the target is stationary. In particular it
is relatively easy to prove that the control law forces the agent
position to exponentially circumnavigate the estimated, as op-
posed to the true traget position at the prescribed distance. It is
also easy to show that should the estimated target position be
correct then the control law does indeed force the agent trajec-
tory to obey the p.e. condition. Clearly these two properties by
themselves are not enough. The direct use of the second prop-
erty has an inherent circularity in its logic, as all it states is
that p.e. is obtained once the localization step has converged,
while p.e. is needed to secure this convergence in the first place.
The technical challenge brought about by closing the loop is to
supply the missing piece that demonstrates that the agent tra-
jectory meets the p.e. condition even in the transient phase.

The third challenge is to prove stability with a drifting target.
As can be imagined our stability analysis has two parts. We first
show that when the target is stationary, the circumnavigation
objective is met exponentially. Drift is tackled using robustness
considerations. However, inherent to the circumnavigation ob-
jective is the constraint that even in the stationary case only
a part of the state converges exponentially to a point. The re-
mainder converges exponentially to a trajectory that is not com-
pletely specified. This is a classic partial stability setting. One
cannot directly appeal to standard inverse Lyapunov theorems
to establish robustness to slow drift. Nor is it easy to apply any
of the known techniques documented in the partial stability lit-
erature [9]. Rather, we define a reduced state space that permits
us to invoke standard inverse Lyapunov theory. The state vari-
ables in this reduced state space comprise only those signals that
converge exponentially to zero, when the target is stationary.
The remaining variables appear as time varying parameters in
the kernel of this reduced state space. Stability of this new state
space is proven under certain conditions on these new param-
eters, conditions that hold regardless of convergence and slow
drift. We regard the use of such a reduced state space to be a
technique that can potentially be used in other partial stability
problems.
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In the next section the circumnavigation problem described
above is formally defined. Section III, provides our algorithm.
A preliminary analysis of the control laws is presented in Sec-
tion IV. Section V provides a reduced state space that assists in
our analysis. In Section VI we establish the exponential stability
of the system when the target is stationary. The stability of the
system is shown for the case where the target is undergoing a
drift in Section VII. In Section VIII a method to choose one of
the parameters in the control laws is presented. Simulations are
in Section IX.

II. PROBLEM STATEMENT

In what follows we formally define the problem addressed in
this paper and introduce relevant assumptions.

Problem 2.1: Consider a target at an unknown position
and an agent at known position in at time

. Knowing , in some reference frame chosen by
the agent, a desired distance , and the measurement

(II1)

for each time instant , find a control law that ensures
that the following hold asymptotically: (a) When is constant,

circumnavigates1 at a distance from . In particular,
for all and

(II2)

There is an and a constant , such that whenever
, there holds

(II3)

Here as in the rest of the paper denotes the 2-norm. In the
problem statement (a) ensures that when the target is stationary,

rotates around at a distance . Item (b) requires that this
circumnavigation be robust to drift.

We will assume that the agent can execute any motion of the
form , where obeys for some constant

, and all , . These ensure that the
force on the agent is bounded. As noted in the introduction,
our two-pronged approach to this problem is as follows. We
simultaneously estimate and devise a law that forces
to circumnavigate the estimate of at a distance from it.
One can break down Problem 2.1 into the following two sub-
problems:

1) How can one estimate from the distance measure-
ments without explicit differentiation2 of any signal?

2) How can one make the agent move on a trajectory that is
ultimately at a distance from the estimate of ?

1We will make precise what “circumnavigate” means in the sequel. In spirit
this means that the trajectory asymptotically attained by the agent lets it view
the target from a sufficiently rich set of perspectives.

2Excluding differentiation is, at least roughly speaking, equivalent to ex-
cluding measurement of relative speed or relative velocity. Such measurements
could be contemplated with a further sensor.

III. PROPOSED ALGORITHM

As noted earlier, the algorithm we enunciate comprises two
steps to be simultaneously executed. Section III-A describes the
localization step that is designed to estimate the location of the
target from the distance measurements . Section III-B de-
scribes the control step that is designed to force the agent to
circumnavigate the estimate provided by the localization step.

A. The Localization Step

The localization algorithm for estimating , from , is
the algorithm formulated in [12]. To make the paper more self
contained, beyond just stating the algorithm we also provide the
intuition behind it. First observe that because of (II1), when is
a constant, one obtains

Thus, with an estimate of

(III1)
Consequently, if is constant for any , the algorithm

(III2)

reduces to

(III3)

Differential equations such as (III3) have been well studied in
the adaptive identification literature. In particular in (III3),
converges exponentially to , provided is p.e., [13], with
p.e. defined in Definition 3.1 below. In this definition, and else-
where in the paper, for square matrices and , ,
designates that is positive (semi)definite.

Definition 3.1: [13] Consider any positive integer and a
signal . Then is p.e. if there exist positive
and , such that for all , there holds

Essentially this requires that persistently span . The
upper bound is simply a boundedness assumption. The and

will be called p.e. parameters. As shown in [12] for ,
being p.e., is equivalent to the requirement that over every

time interval of length , the minimum distance of from
any straight line be larger than a number that grows with ,
i.e. persistently avoids a linear trajectory. Similarly, for

, must persistently avoid a planar trajectory. This ac-
cords with intuition as in , one must have distances from non-
collinear points to achieve localization, just as in one must
have distances from noncoplanar points. Persistent avoidance is
needed for exponential convergence.
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Thus, (III1) can serve as a localization step. However its im-
plementation requires the differentiation of rendering it
impractical. Instead, for , [12] generates

(III4)

(III5)

(III6)

where , and are arbitrary scalars, and is an arbi-
trary vector. Note that the generation of , and re-
quires simply the measurements and the knowledge of the
localizing agent’s own position, and can be performed without
explicit differentiation.

Then the localization algorithm of [12] and indeed the local-
ization step used in this paper is defined by (III4) to (III6) and
(III7) below

(III7)

Here denotes the estimate of at time , and
is an adaptation gain. As argued in [12], the signals ,
and are just filtered versions of the derivatives of ,

and , respectively. Further, as shown in [12], and
also in Section IV, when is a constant, one has

(III8)

where is an exponentially decaying signal. Thus, for sta-
tionary , to within an exponentially decaying signal, (III7) has
the form of (III2) with replacing . Consequently, expo-
nential localization is effected if is p.e.. As proved in [12],

is p.e. iff is p.e.. Clearly then the convergence proof
in [12], is trivial, once as is done in [12], is assumed to be
p.e.. There is a potential for p.e. to be lost once the loop is closed
to achieve circumnavigation. One key challenge of this paper is
to devise a control step that maintains p.e. despite closing the
loop. This is done in Section III-B.

B. Control Step

In keeping with our outlined strategy we now propose a
control law that forces to circumnavigate , generated
through (III4)–(III7). Define

(III9)

and the control law

(III10)
where obeys four conditions captured in the
assumption below (That there exist satisfying these con-
ditions will be shown later in Section VIII). As will be proved
in the next section, this control law forces to converge to

, i.e. the agent takes up the correct distance from the estimated
target position, . If also converges to , then con-
verges to , hence converges to .

Assumption 3.1: (i) There exists a such that

(III11)

and (ii) is skew symmetric for all ; (iii) is differen-
tiable everywhere; and (iv) the derivative of the solution of the
differential equation

(III12)

is p.e. for any arbitrary nonzero value of . More precisely,
there exist positive such that for all

(III13)
We now motivate this algorithm by flagging certain properties

that will be derived in the sequel. First, we note that in (III10)
the term helps drive to . The role of the

matrix is to force to rotate around at a distance and
to induce p.e.. To understand this, note that as is skew
symmetric, for all and

(III14)

As shown in the next section, (III14) ensures that the solution
of (III12) has the same magnitude at all instants of time. Thus,
should converge to , then will circumnavigate ,
the localization estimate, at the presecribed distance . Indeed,
Setion IV shows that regardless of drift in the target, does
indeed converge to . Further, because of (iv), is
asymptotically p.e.. Should converge to zero or become
ultimately small, then would still be p.e.. Indeed these are the
very properties flagged in the introduction. As already noted, a
key challenge is to show that does converge to which in turn
requires that be p.e. to begin with.

As shown in Section VIII, in , with the rotation matrix
below, and any nonzero real scalar, suffices

(III15)

In however, the selection of is more complicated, as
for (III13) to hold with a constant , must be nonsingular.
No skew symmetric matrix is however nonsingular, thus
entailing a periodic , described in Section VIII.

To summarize, the overall system is (II1), (III4)–(III7) and
(III10), under Assumption (3.1) and (III9). Further, the , ,
and , serve as the underlying state variables. The stability
analysis that follows, is for a general .

Two final points need to be made. First, as implied in the fore-
going, we will show that is in fact p.e.. This is what we
mean by “circumnavigation”. Combined with (II2) this means
that asymptotically, the agent executes a sufficiently rich trajec-
tory at a distance from the target. Second, while it may ap-
pear that the algorithm requires the knowledge of the absolute
position , it in fact allows the agent to select the coordinate
frame with respect to which is chosen. For example the agent
may choose , or for that matter , to be the origin. Thus,
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this imposes no more of a burden than that required by algo-
rithms that work with relative as opposed to absolute position
information.

IV. PRELIMINARY ANALYSIS

In this section we derive some important relationships and
properties that reduce to many of the intermediate properties
flagged in the foregoing. All the results in this section hold re-
gardless of whether the target drifts.

We first establish a relationship that in the stationary target
case, justifies the observation leading to (III8).

Observe from (III4) that . Thus, one obtains

(IV1)
Similarly

(IV2)

(IV3)

(IV4)

where

(IV5)

The significance of (IV4) under (IV5) is as follows. First when
, with a constant, the observation in (III8) follows.

More importantly it captures the dependence of the update
kernel in (III7) on the target velocity. Recall also that to tackle
partial stability issues we will eventually redefine the state
space. The signal , will be an important element of the
redefined state and (IV4) an important part of the state update.

As foreshadowed earlier, we now present a lemma that shows
that the agent located at moves to a trajectory maintaining
a constant distance from the estimated position of the target at
position , even if the target drifts.

Lemma 4.1: Consider (III10) under Assumption 3.1. Suppose
that there exists a constant such that in (III9), .
Then converges exponentially to , and there holds for
all

(IV6)

Proof: See Appendix A.
Thus we have proved that irrespective of drift, (III10) meets

one of its defining objectives: That the agent will ultimately be
at a distance from the estimated location of the target.

Section III-B noted that as is skew symmetric, the so-
lution of (III12) has constant magnitude. To establish this all
we need to show is that the state transition matrix for , i.e.

that obeys for all

(IV7)

is orthogonal. This is done in Lemma 4.2 below.
Lemma 4.2: Consider defined in (IV7). Under As-

sumption 3.1

Proof: See Appendix A.
Another claim made in Section III-B was that (III10) ensures

that is p.e. We now demonstrate that fact. For nota-
tional convenience define the signal

(IV8)

We have the following proposition which again holds regardless
of whether the target drifts.

Proposition 4.1: Consider (III10), (II1) and (III9), under As-
sumption 3.1 and . Then the signal defined
in (IV8) has the following properties: (i) It is p.e. (ii) It and its
derivative are bounded.

Proof: See Appendix A.
We end this section by commenting on the significance of

to the development in the sequel. Recall the need to rede-
fine the state space to invoke standard inverse Lyapunov theo-
rems so that we can deal with drift. One reason why these the-
orems do not apply is that even for stationary targets, a part of
the state space converges to a trajectory that is not completely
specified, as all we can say about the asymptotic trajectory of

is that it obeys . This alone is not enough
to invoke standard inverse Lyapunov theorems requiring more
specificity. In the kernel of the redefined state space we will use
to circumvent this difficulty, will generate a time varying
parameter. Even though technically is a function of the
state variables of the original state vector, its properties required
to prove stability of this redefined state space are those claimed
in Proposition 4.1.

V. REDUCED STATE SPACE

To this point we have shown that a part of the objectives of
our two-pronged strategy, namely that converges exponen-
tially to , is met regardless of whether is zero. We have also
shown, again without regard to the presence of drift, that the
signal is p.e. Thus, to show that our re-
maining objectives are met, all we need to show is that con-
verges exponentially to in the drift free case, and to within an
estimation error proportional to the maximum drift speed, pro-
vided this speed is small enough. This will in turn show that

converges exponentially to , in the drift free case and is
close to , under slow enough drift.

Taken at face value, a natural state space describing our al-
gorithm is that involving the state vector: ,
where is the localization error

(V1)

It is however, difficult to tackle drift with this choice of state
vector. Specifically, by design, even in the drift free case only

and converge exponentially to a point. The remaining part
of the state vector comprising, , and are not designed to
converge to a point, but rather to a trajectory that is only partially
defined. This makes it difficult to directly leverage conventional
inverse Lyapunov arguments.

To address this problem we recognize that all that is at issue
is the behavior of , while , which determines and ,
is pertinent only to the extent that it indirectly facilitates the
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convergence of . In fact as will be evident in the sequel the
convergence of hinges on in (III6) being p.e.. This in turn
is ensured by being p.e., regardless of drift. The key technical
difficulty lies in ensuring this latter fact particularly when the
target drifts.

To sidestep this difficulty in Section V-A we present a re-
duced state vector whose elements exponentially converge to
zero in the drift free case. The remaining state variables appear
in the system equations governing the behavior this reduced
state vector as time varying parameters. Section V-B derives
certain properties that these parameters satisfy without having to
first demonstrate convergence. These properties suffice to prove
stability.

A. State Vector Redefined

The reduced state vector is

(V2)

where is as in (IV5), and for arbitrary ,
obeys

(V3)

It turns out that all our objectives are met if in the drift free case
converges exponentially, to zero. Informally, going to zero
implies that goes to , i.e. because of Lemma 4.1,
goes to . Thus all signals are bounded. Furthermore, because of
(III7) and (III8), goes to zero. Then because of Proposition
4.1, is p.e.

Consequently, a clear virtue of this reduced state space is that
we can invoke standard inverse Lypunov theory to tackle the
case with drift. Instead of being NLPTV the system of equations
governing is nonlinear time varying (NLTV) with two time
varying parameters: , and obeying

(V4)

(V5)

As noted in the previous section, helps generate a crucial
parameter, namely . Though and are signals related to the
state vectors, it turns out that all that is important about them
is that be p.e.. Observe also that the signals and do
not directly appear in . Rather the features of critical to es-
tablishing stability properties, are captured by the time varying
parameter .

To establish the differential equations that govern the reduced
state space, we first expose a simple relationship between, , ,

, and .
Lemma 5.1: Consider (III6), (IV8), (V1), and (V3)–(V5).

Then for all , there holds

(V6)

Proof: From (IV8) (V1), and (V3)–(V5) one obtains

Then the result follows from (IV3) and the fact that
.

To complete the derivation of the new state variable equa-
tions, observe from (III7), (IV5) and (V1) that

Thus, using (IV4), (V3) and Lemma 5.1 we have that

(V7)

These are the governing equations for the new state space
when the target drifts; and appear as time varying
parameters. They capture the part of the state space that does
not go to zero.

We next specialize this system to the driftless case. Note that,
as , for identically zero, one has from Lemma 5.1
and (V5) that

(V8)

Thus in the driftless case of (V7) becomes

(V9)

Even in the drift free case of (V9), the resulting reduced order
system is NLTV rather than NLPTV, and now appears as
a time varying parameter.

Our goal will be to show that the system (V9) is exponentially
stable. Then from Lemma 4.1 one can immediately draw the
conclusion that goes to a distance from exponentially
fast and moves around with radius . To tackle drift we will
then invoke inverse Lyapunov theorems. To this end we will
treat (V7) as a perturbed version of (V9). Observe the pertur-
bation comes directly through an affine perturbation manifested
through the terms. It also comes indirectly through the pa-
rameter that exponentially vanishes when is zero.

B. Key Properties of Time Varying Parameters

Recall, our earlier assertion that and model the ef-
fect of the nonvanishing parts of the original state space. As
is shown in subsequent sections (V9) is exponentially stable if

is p.e.. Further the stability of (V7) requires that
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is p.e.. In this section we demonstrate these properties. First
a proposition demonstrating the p.e. of .

Proposition 5.1: Suppose , and the conditions of
Proposition 4.1 hold. Then the signal defined in (V4) has
the following properties: (i) It is p.e. (ii) It and its derivative are
bounded.

Proof: See Appendix B.
We next show that under sufficiently slow drift, is p.e.

as well.
Proposition 5.2: Suppose , the conditions of Proposi-

tion 4.1 hold, for some and all , , and and
are as in (V4) and (V5). Define . Then there
exists a , such that for all , is p.e. and bounded.

Proof: See Appendix B.
Remark 5.1: From the proof of this proposition in Ap-

pendix B, it is evident that, and
(see (B.1) and (B.2)) represent a lower bound on and an
upper bound on respectively. Both are independent of . The
integrals representing the p.e. conditions of and are
over identical intervals.

Qualitatively, the value of that ensures the p.e. of is
one but, not the only, condition that defines how fast a drift is
permissible.

VI. STABILITY FOR STATIONARY TARGET

In this section we establish the fact that our algorithm
achieves the circumnavigation objective in the driftless case
by first establishing the exponential stability of (V9). As is
evident from the statement of the proposition below, the key
requirement for convergence is that be p.e., a fact already
established in the previous section.

Proposition 6.1: The system (V9) with the state variables
, and , and

and , is globally exponentially asymptotically stable if
is bounded and p.e..

Proof: See Appendix C.
Remark 6.1: Since the system is exponentially asymptoti-

cally stable, there exist such that for all and

Faster convergence results from a smaller and larger .
These depend exclusively on the p.e. parameters of , and .
In particular upper bounds on and lower bounds on can
be found that connote a convergence rate that increases with
(see (B.1)) and , and declines with and . The dependence
on is more complicated.

We can now state the main result of this section.
Theorem 6.1: Consider the system described by the equa-

tions (II1), and (III4)–(III7), (III9), (III10) with assumption 3.1
in force, , for all , and for some , .
Then converges to exponentially.

Proof: Evidently, (V9) holds. Because of Proposition 5.1
is p.e.. Thus, from Proposition 6.1, and (V1), converges

exponetially to , and Lemma 4.1, proves the result.
This proves the exponential stability of our algorithm in the

driftless case, with the minor caveat that . Be-

cause of Lemma 4.1, does not converge to a point but rather
moves in an orbit around the traget.

VII. STABILITY UNDER SLOW DRIFT

So far we have established exponential stability for the case
where . Now we consider a varying , subject to the
following assumption:

Assumption 7.1: The target trajectory is differentiable and
there exists such that for all

(VII1)

We will first prove the stability of (V7) and then tie it back to
the circumnavigation problem. We rewrite the system defined
by (V7) as

(VII2)

where

(VII3)

(VII4)

(VII5)

Observe equals the kernel of (V9), with replaced
by . As the previous section has established that with
sufficiently small , is p.e., by invoking Proposi-
tion 6.1, one can conclude that had and been zero, (VII2)
would have been exponentially stable. The act as perturba-
tions that will be treated by invoking standard inverse Lyapunov
theorems.

Proposition 7.1: Consider the system defined by (VII2) with
the state variables , and ,
a time varying parameter as in (V5), assumption
7.1 in force, and and . Suppose is
bounded and p.e. and there is a constant such that

for all . Then there exist positive constants and
such that for all . Further is

independent of , and convergence is uniform in the initial time.
Proof: See Appendix C.

Now we present the main result of this section.
Theorem 7.1: Consider the system described by the equations

(II1), and (III4)–(III7), (III9), (III10) with assumptions 3.1 and
7.1 in force, and for some , . Then there exist
positive constants and such that for all
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Proof: Note (V7) holds. From Proposition 5.1, is p.e..
Thus, from Proposition 7.1, and (V1), for sufficiently small
, there exists independent of , such that is ultimately

bounded by and Lemma 4.1, proves the result.
Thus all the circumnavigation objectives are met. Qualita-

tively, , the upper bound on the target velocity, depends on ,
and and in (III13). These ultimately determine the p.e.
parameters of . Based on these must be small enough to en-
sure that, (a) is p.e.; (b) in the proof of Proposition
7.1 is positive; and , in the proof of Theorem 7.1 is small
enough. Under these conditions convergence is global modulo
the requrement that .

VIII. CHOOSING

In this section we focus on the selection of to satisfy
Assumption 3.1. Consider first , we show that with
as in (III15) the matrix obeys the requirements of
Assumption 3.1. Indeed consider the Lemma below.

Lemma 8.1: With as in (III15), and a nonzero con-
sider obeying

(VIII1)

Denote . Define as the argument of the com-
plex number . Then there holds for all

(VIII2)

Proof: Follows from the facts that
, and that the state

transition matrix corresponding to (VIII1) is:

The fact that (VIII2) satisfies (III13) with identified with
, is trivial to check. It is also clear that under this selection,

circumnavigates with an angular speed of .
To address the case we first preclude the possibility

that can be a constant matrix. Indeed observe that no real
skew-symmetric matrix in can be nonsingular, as if is an
eigenvalue of a skew symmetric matrix then so is . Thus for
any odd , an skew symmetric matrix must have a zero
eigenvalue. To complete the argument we present the following
Lemma.

Lemma 8.2: Suppose in (III12) for all and is
singular. Then (III13) cannot hold.

Proof: If is singular, then has an eigenvalue at one.
Thus there exists a such that for all ,
is a constant, i.e. for this , .

Thus, we must search for a periodic to meet the require-
ments of Assumption 3.1. Effectively, the we will choose
will switch periodically between the two 3 3 matrices

(VIII3)

and being real nonzero scalars. Observe, rotates on the
plane defined by . Likewise rotates on the plane
defined by . This switching can be shown to achieve
the required condition, and its effect is illustrated in the next
section through simulations. However, to ensure that the re-
sulting matrix is differentiable, we require a differentiable tran-
sition between and . To achieve this define a nondecreasing

, that obeys

(VIII4)

(VIII5)

(VIII6)

An example of such a is

.
(VIII7)

Clearly this satisfies (VIII4) and (VIII5). Further (VIII6) holds
as

Now, for nonzero scalars and , we will select as follows.
For a suitably small , define

(VIII8)

and

(VIII9)
For all , let denote the largest integer satisfying
and let . Then define as

(VIII10)
Observe that (VIII10) automatically satisfies (i–iii) of Assump-
tion 3.1. That it satisfies (iv) as well, is now proved.

Theorem 8.1: Consider (III12) with defined in
(VIII8)–(VIII10). Then for every pair of nonzero there
exists a such that (III13) holds for all .

Proof: See Appendix D.

IX. SIMULATIONS

In this section, we present simulation studies of the behavior
of the circumnavigation system (III4)–(III10). We consider
three scenarios in and one in .

In the first simulation, depicted in Fig. 1, we study the case
where , , and . A closer
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Fig. 1. Agent trajectory in � � � plane. ������ ������, ������ �����, and
����� � ������ for the case where the target is stationary and there is not any
noise present in the distance measurements.

Fig. 2. Agent trajectory in � � � plane. ������ ������, ������ �����, and
������ ������, for the case where the target is undergoing on a drifting motion
on a circle � ����� �� ��, and the distance measurements are noise free.

look at the agent trajectory reveals a very small radius turn near
the point . The reason for this behavior is the following.
The term in (III10) is designed to
force to move on a straight line trajectory in a manner that
drives to . The second term forces
to rotate around . Initially the first term is dominant, and
the agent quickly travels a long distance on an almost straight
line. By the time the agent reaches , the rotational mo-
tion component becomes comparable to the straight line mo-
tion component; hence the effect of this change shows itself as
a sharp turn.

In the second simulation, shown in Fig. 2, we study the be-
havior of the system when the target slowly drifts on a circle cen-
tered at the origin with angular velocity equal to 0.005 rad/sec.

Fig. 3. Agent trajectory in � � � plane. ������ ������, ������ �����, and
����� � ������ for the case where the target is drifting on a line with constant
velocity, and the distance measurements are noise free.

Fig. 4. Agent trajectory in � � � plane. ������ ������, ������ �����, and
������ ������ for the case where the target is stationary but the distance mea-
surements are corrupted by noise.

The agent maintains its distance from the target in a neighbor-
hood of the desired distance. Notice that the speed of the target
is always much less than the speed of the agent.

The third simulation, Fig. 3, depicts the algorithm coping with
a target moving with a constant velocity. Again the agent main-
tains its distance from the target in a neighborhood of the desired
distance.

The fourth, Fig. 4, considers the case where the target is sta-
tionary and the distance measurement is noisy: it is assumed that

, where is measurement of the
distance and is a strict-sense stationary random process
with , . Evidently, the control law is still suc-
cessful in moving the agent to an orbit with the distance to the
source kept close to its desired value.
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Fig. 5. Agent trajectory in � �� �� plane. ������ ������, ������ �����,
and ����� � ������ for the case where the target is stationary and there is no
noise present in the distance measurements. Moreover, the agent is forced to
have constant speed.

Fig. 6. Agent trajectory in � �� �� plane. ������ ������, ������ �����,
and ������ ������ for the case where the target is undergoing a drifting motion,
and the distance measurements are noise free.

Fig. 5 depicts the case where , , and in
(VIII3), . Some features of the agent trajectory are
noteworthy. First in the transient phase three distinct phenomena
are observed. As in the 2-D case, while is large the
agent heads toward the target pretty much in a straight line. Once

becomes small the rotational effect of in (III10)
dominates. Note in the design of in the three dimensional
case the agent alternately rotates parallel to the X-Y and the Y-Z
planes. The transient phase concludes after just one such pair of
rotations. Subsequently the agent circumnavigates the target by
alternatingly rotating along the X-Y and the Y-Z planes.

Finally, Fig. 6 depicts a 3-D example with
a slowly drifting target with trajectory,

and with ini-
tial agent position: . The desired distance is

, and in (VIII3), . The transient phase has the
same features as the stationary case above. At steady state, as
the agent pursues the drifting target, alternating motion parallel
to the X-Y and the Y-Z plains persists.

X. CONCLUSION

We have proposed an algorithm for circumnavigating a target
at an unknown position by a single agent, at a pre-defined
distance from the target, using only the measurements of the
agent’s distance to the target. Stability has been established
when the target is stationary and when it is undergoing a
slow drift. Furthermore, in simulations the performance of the
method in the presence of noise and in the situations where the
source is undergoing a drifting motion is presented. A possible
extension of the current scheme is to consider the cases where
more than one agent is present.

APPENDIX

A. Proofs of Results in Section IV

Proof of Lemma 4.1: Because of (III14), (III10) implies

(A1)

Observe that is bounded and continuous. Consider first the
case where . Then the derivative above is initially neg-
ative, i.e. declines in value. By its continuity, for
to become less , at some point it must equal , when
will stop changing. Since throughout this time ,
convergence of to occurs at an exponential rate and

for all . If , then for all , as the
derivative of is nonnegative. Again exponential conver-
gence of to occurs.

Proof of Lemma 4.2: Consider (III12). Then for all , and
, . Further because of (III14)

Thus, the result holds as for all , and all ,
.

Proof of Proposition 4.1: To prove (i) we have to show that
there exist , such that for all there holds

(A2)

The upper bound will follow if we prove (ii). Thus we first focus
on proving the lower bound. A consequence of Assumption 3.1
is that for all , and any unit

(A3)
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Further because of (III10) for all and

(A4)

Assumption 3.1 ensures that is bounded. Thus there exists
such that

(A5)

Further because of Lemma 4.1, there is a , such that for
every , there is a such that for all

(A6)

(A7)

Thus because of Lemma 4.2, and (A4)–(A7) for every unit
and

Thus, because of Lemma 4.2, (A5) and (A6), there exist all
positive such that for all there holds

(A8)

Choose . Then because of (A3) and (A8) for all
, there holds

Then the left inequality in (A2) follows by choosing so that
.

The boundedness of and hence the upper bound of the hy-
pothesized p.e. condition in (i), follows from (III10), bound-
edness of , Lemma 4.1 and Lemma 4.2. The proof of the

boundedness of the derivative of follows from the differ-
entiability of , Lemma 4.1, (A1) and by noting from (III10)
that:

B. Proofs of Results in Section V

We begin with a Lemma from [17]:
Lemma A.1: If is a p.e. signal satisfying and

is a stable, minimum phase, proper rational transfer func-
tion, then is p.e. and

Then the proof of Proposition 5.1 is a direct consequence of
Lemma A.1 and Proposition 4.1.

Proof of Proposition 5.2: Boundedness of follows from
the boundedness of , (V5) and the fact that ,
for all . To prove that is p.e. we need to prove that there
exist positive and such that the following holds for all
and with :

(B1)

The upper bound follows from the boundedness of . Since
is p.e. there exist positive , and such that for all

and with there holds

(B2)

Because of (V5) and the fact that , for all , one also
has that for all . Thus, we have

(B3)

So the result follows by setting and
and by requiring .

C. Proof of Propositions 6.1 and 7.1

To prove Proposition 6.1 we need the following lemma.
Lemma A.2: Consider an function and a

bounded function . Then if the signal
defined below

(C1)

with arbitrary , is bounded and in .
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Proof: First consider the homogeneous system

(C2)

Observe with , there holds

(C3)

By the Bellman–Gronwall inequality for all and , we
have that

(C4)

Since , for every , there is a , such that for all

Consequently, for , by the Cauchy-Schwarz inequality
there holds

Thus by choosing , one finds from (C4), that (C2) is
exponentially stable, and the result follows because .

Proof of Proposition 6.1: Define, . First
consider the last two equations in (V9). For some to be
specified presently, choose the Lyapunov function

(C5)

Then there holds

(C6)

Thus as long as , one has

(C7)

Hence

(C8)

Further from the third equation in (V9), converges expo-
nentially to zero. Hence for every

(C9)

Observe from (V3) and (V9)

(C10)
Thus from Lemma A.2, identifying, , ,
and with , and , respectively, is bounded and in

. As is bounded must be bounded. As is p.e. and
is in , is p.e. as well, [14]. Now observe

(C11)

From [13] we know that

is EAS because is pe. Hence, as converges exponen-
tially to zero, so does . Exponential convergence of
now follows directly from the first equation in (V9).

Proof of Proposition 7.1: First we rewrite as

(C12)

where and . Observe
is identical to the right hand side of (V9) with replaced by .
Thus, from Theorem 6.1 and the fact that because of Proposition
5.2, for sufficiently small , is bounded and pe,

is exponentially asymptotic stable.
The associated convergence parameters, (see remark 6.1) de-

pend only on the p.e. parameters of , and because of remark
5.1 bounds on them can be chosen independent of .

Hence there exists a Lyapunov function and positive real
constants , , , and exist such that [15]

(C13)

(C14)

(C15)

Further as the convergence parameters are independent of so
are the . What is more, depends on only through .
Thus the are independent of as well.

Observe also that there exists a constant such that for all

(C16)

Further because of the bound on , and the fact that
, there is a independent of , such that for all

(C17)

Now consider
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Choose and call . Observe
is independent of . Then there holds

Observe if exceeds then
. Thus, arguing as in [16] is ultimately bounded by

. Consequently is ultimately bounded by
. As , , and are independent of and the

initial time, the result follows.

D. Proof of Theorem 8.1

We need three Lemmas.
Lemma A.3: Consider (VIII2). Suppose for any , all

, some , there exists such that
. Then

(D1)

Further with , for all and

(D2)

Proof: For some real there holds
. Hence, . Thus

under (VIII2)

(D3)

Therefore, on any interval the maximum of
is . Further (D2) is a direct

consequence of (VIII2).
Next we prove the following lemma.
Lemma A.4: Consider

(D4)

where and . Then for all ,
.

Proof: Under (D4), for all , . Thus

Lastly, we present the following result from [18].
Lemma A.5: Suppose on a closed interval of length

, a signal is twice differentiable and for some
and

Then for some independent of , and , and
one has

Proof of Theorem 8.1: We will prove the result by contra-
diction. First observe that as is differentiable and is
bounded. Also observe that if (III13) holds for ,
then it holds for arbitrary . Thus assume that

. Consequently for all

(D5)

Suppose (III13) is violated. Then for all and ,
there exists a and a unit norm , such
that

Thus from Lemma A.5 for some , all , some ,
dependent only on the bound on and , and all

, there exists a and unit norm , for which

(D6)

Choose

(D7)

Denote . Observe at least one of
or must exceed , since has unit norm. We
consider two cases.

Case I: . Since the inequality in (D6)
holds on the indicated interval, it must hold for all

, . Thus for all
and , there holds

(D8)

Now for all , there also
holds . Thus, from (D1) of
Lemma A.3 and the hypothesis of the case, we obtain that for
all

(D9)
Further with some , in the interval

, . Thus

(D10)

Consequently because of (D5), there holds

(D11)
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Further throughout the interval for
some ,

(D12)

Thus from Lemma A.4 and (D10)

(D13)

Also from (D12) and (D11)

holds for all . Notice in the interval
, (D12) holds with .

Thus from (D2) of Lemma A.3

(D14)

Consequently, from (D13)

Further, from Lemma A.4

(D15)
Then for

(D16)

and sufficiently small , (D15), contradicts with (D9).
Case II: . Follows similarly with the

same set of given in (D16).
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