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Distance Estimation From Received Signal Strength
Under Log-Normal Shadowing: Bias and Variance
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Abstract—In source localization, one estimates the location of
a source using a variety of relative position information. Many
algorithms use certain powers of distances to effect localization.
In practice, exact distance measurement is not directly available
and must be estimated from information such as received signal
strength (RSS), time of arrival, or time difference of arrival. This
letter considers bias and variance issues in estimating powers of
distances from RSS affected by practical log-normal shadowing.
We show that the underlying estimation problem is inefficient and
that the maximum likelihood estimate yields a bias and a mean-
square error (MSE) that both increase exponentially with the noise
power. We then characterize the class of unbiased estimates and
show that there is only one estimator in this class, but that its MSE
also grows exponentially with the noise power. Finally, we pro-
vide the linear minimum mean-square error (MMSE) estimate and
show that its bias and MSE are both bounded in the noise power.

Index Terms—Localization, maximum likelihood, received
signal strength, sensors, unbiased.

1. INTRODUCTION

HE last few years have witnessed significant increase of
T research activity in the area of source localization [1]. Lo-
calization involves a group of sensors jointly estimating the lo-
cation of a signal source using such relative position information
as distance, bearing, received signal strength (RSS), time of ar-
rival (TOA), and time difference of arrival (TDOA).
Localization is fundamental to a number of emerging applica-
tions [1]. For example, a network of sensors deployed to combat
bioterrorism must not only detect the presence of a potential
threat but must also locate its source. In (wireless) pervasive
computing [2]-[4], localization enables the computer network
to identify the most appropriate serving units with matching ca-
pabilities for the users. In sensor networks [5], individual sen-
sors must know their own positions, to route packets, detect
faults, and detect and record events. As compellingly, [6] cata-
logs a burgeoning multibillion dollar market surrounding wire-
less location technology. A common source of relative position
information is the RSS. In particular, suppose a source emits
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a signal that has strength A at a unit distance from the source.
Suppose the signal strength at a distance d from the source is s.
Then with 3 as the path loss coefficient, in the absence of noise,
one has

s = A (1)

ds

In the noise-free case, s directly provides the distance d, pro-
vided (3 and A are known. Indeed in the sequel, we will assume
the knowledge of these two parameters. Several papers such as
[6]-[14] present localization algorithms that assume that powers
of distances are known. The distance itself is rarely directly
available, but it must be deduced from information such as RSS,
TOA, or TDOA. At the same time, in far field, RSS is usually af-
fected by log-normal shadowing [15], i.e., with w ~ N (0, 02),
(1) must be replaced by

Ins=InA—-fBlnd+ w. 2)

There are papers in the literature, e.g., [17] and [18], that study
the accuracy of localization using RSS measurements.

This letter considers the estimation of d™ for some positive
m from s when (2) applies. The focus is on the issues of bias and
mean-square error (MSE). Indeed as argued in Section II, this
estimation problem is inefficient in that it has no unbiased esti-
mate that meets the Cramer—Rao lower bound (CRLB), thus mo-
tivating the study of this problem. A further motivation comes
from the fact also demonstrated in this section that not only is the
maximum likelihood estimate (MLE) biased but also has bias
and MSE that grow exponentially with o2,

Thus, in Section III, we consider the nature of unbiased es-
timators. Using techniques developed in the literature on com-
plete sufficient statistics of exponential family of distributions
[16], we show that there is in fact a unique unbiased estimator
and that its variance also grows exponentially with o2 . Finally, in
Section IV, we provide the linear minimum mean-square error
(MMSE) estimator whose MSE and bias are both shown to be
bounded in 0.

II. PRELIMINARIES
For some positive real m, define

m

-
S

(0%

Then with p = d™ and
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(2) becomes
z=e “p. 4)
The underlying estimation problem is to estimate p from the
observation z, obeying (4) and the knowledge of o and o2.
Consider now the derivation of the CRLB for this problem.
Observe that (4) is equivalent to
Inz=1Inp — aw. %)
Call y = In z, and observe that

y ~ N(lnp, o?c?).

The log-likelihood function is given by

_ (y — Inp)?
l(y,p) = —1n [\/ 271'0(1} T oagr
As
Ol(y,p) _y—Inp
Op a?o?p

we have that

E

()]t

Thus, for this problem
CRLB = p?a’0? (6)

which increases linearly with 2.

One then asks whether an efficient estimator exists for this
problem, i.e., is there an unbiased estimate whose MSE matches
the CRLB. To this end, consider (5) and observe that the data
have an affine dependence on the Gaussian noise w but a non-
affine dependence on p. Thus, from aresult in [19], we conclude
that no efficient estimate of p exists.

This leads us to examine the properties of MLE, which from
(5) equals

PML = 2. )
From (4) and the fact that for any a
E[e™] = 2’7’ /2 ®)
one obtains the bias
Elpmi] —p=E [pe™ "] —p= (eazaz/2 - 1) D-
Further, the MSE is given by
E|(mn —p)°] = (™" = 1%y’
= Ble™2*" — 2e7" 4 1]p?
= (62"2”2 — 2 7/2 1) p2.

Thus, both the bias and the MSE of the MLE grow exponentially
with o2.

At the same time, we note that MLE is asymptotically effi-
cient. Thus, in settings where the MLE is obtained using mul-
tiple measurements, an improved performance will be noted.

III. BEST UNBIASED ESTIMATE

Given that there are no efficient estimators for (4), it behooves
us to determine the best unbiased estimator for this problem. To
this end, consider an arbitrary estimator f(z) whose mean is p
forall p > 0, i.e.,

E[f(2)] = p. )

As « and o2 are known, we permit f(-) to be a function of «
and o2. Observe this requires that for all p > 0, there hold
1 o w2
p=— / fpe=*")e™ 252 dw. (10)
210 J—o

Then because of (5), we have that for all p > 0, there holds

o 2
1 / f(z) exp <_M> dz=rp. (11)
2roa Jo z

20202
Now define
t=Inz (12)
and
v= ;121:2 (13)

Then for all v, (11) becomes

2 _2 1 o
eOL g v — / f
2roa J—oo

i.e., for all v, there holds

( 9 9 U2a202>
exp | @"o"v + 5

v

2 2,22
(ehe  2a% e dte™ " 2

1 o0 2
/ flehe 2%z e dt.  (14)

2moa .

Thus, with v and ¢, the two domain variables

< 9 9 v2a202>
exp | a“o"v + 5

(15)
and
1 f t —- ]‘:2
V2rox

are Laplace pairs. This clearly proves that f(z) is unique.
Further, (15) is nothing more than the moment generating
function of

N(a?0?, a?c?).
Thus, the uniqueness of Laplace pairs establishes the following:

(t — a20?)?
AP\ T T 0242

1 2 1
mf(et)e_zat?fc? =

2moq



from which we obtain that

fle)y=e27¢
Thus, one has that the only unbiased estimate is given by
pu=e"T 2 (16)

We now examine the MSE of p,,. There holds

El(pu —p)’]=E [(6_"22"2 e — 1)1 »?

—E [6—02026—2(‘”1) — 2~ “‘2202

e~ ow + 1:| p2

_ 2 2 2 2 _a?s?
:[ea062a0_26 5

= (ea202 — 1) p2.

Thus, this MSE too rises exponentially with 2.

0202
e 2 —i—l] p2

IV. LINEAR MMSE ESTIMATE

The previous sections show that MLE has a bias that grows
exponentially with o2, as do the MSEs of MLE and the only
unbiased estimate. Contrast this to the fact that the CRLB grows
linearly with o2.

Recall also that the unbiased estimate of Section III is in fact
linear in z. Thus, we derive the linear MMSE estimate, linearity
being in the observation z. We wish to find a b that minimizes

E[(bz - p)*] = E[(be™ " = 1)*]p*. (17)
Clearly, the minimizing b obeys
E[e—aw] —3a252
b= ————~=e" 2z 1

E[e—an] € ( 8)

Thus, the estimate we seek is
—3(1202

pp=e 2 z (19)

Its bias is
B(p,) —p = (e T Bl - 1) p

Likewise, the MSE is E[(p, — p)?]

—3a202

(8—30202E[6—2(yw] — % 5

E’[e_(””] + 1) p2

— (1 _ e—a20'2) p2.

Observe unlike pyr, or p,, whose MSEs grow exponentially with
o2, or for that matter the CRLB which grows linearly in o2, the
MSE of p, is bounded by p?. Likewise, the bias is also bounded
by p in magnitude. Thus, in fact, for large noise power, this MSE
is better than the CRLB. This is of course not a surprise, as the
estimate p,, is biased.
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It is also noteworthy that while the bias in MLE is always
positive, that in p,, is always negative.

V. CONCLUSION

We have considered the estimation of d"* from RSS when the
latter is corrupted by log-normal shadowing. We have shown
that the underlying estimation problem is inefficient and that
both the bias and the MSE of MLE grow exponentially with the
noise power. We have also demonstrated that there is a unique
unbiased estimator whose MSE also grows exponentially with
the noise power. Finally, we have provided the linear MMSE
estimator for which both the magnitude of the bias and the MSE
are bounded in the noise power. The implication of these facts to
source localization directly will be the subject of a forthcoming

paper.
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