Distributed synchronization and medium access in
wireless mesh networks

Sriram Venkateswaran*, Sumit Singh*, Upamanyu Madhow*, Raghu Mudumbai'
* University of California, Santa Barbara, CA 93106, USA
TThe University of Iowa, lowa City, TA 52242, USA

Abstract—Implicit local coordination of nodes in a wireless
network using mechanisms such as Carrier Sense Multiple
Access (CSMA) is conceptually attractive and relatively easy to
implement, but often leads to performance that is far inferior
to what is possible using explicit global coordination strategies
such as Time Division Multiplexing (TDM). In this paper, we
give two examples showing that appropriately designed implicit
coordination strategies that employ learning and memory can
provide performance competitive with that obtained using explicit
strategies, while requiring minimal overhead. The first example is
an algorithm for distributed timing synchronization maintenance
using the timing information already present in ongoing commu-
nication in the network. The second example is a distributed
medium access control protocol that achieves performance close
to time division multiplexing (TDM) without requiring explicit
resource allocation: nodes lock into communication patterns that
have been found to work, with enough randomization to prevent
locking into poor schedules. While the general philosophy of ex-
ploiting learning and memory in the design of network protocols
is of broad applicability, our numerical results emphasize 60 GHz
networks with highly directional links: effective coordination
is particularly important for such networks, in view of the
“deafness” caused by directionality.

I. INTRODUCTION

Cellular networks and wireless local area networks
(WLANG) offer two radically different approaches to wireless
networking. Tight centralized control, with significant use of
feedback signaling (e.g., for power control and channel state
information), is used in cellular networks in order to ensure
efficient usage of precious resources such as power and band-
width. On the other hand, WLANs today use decentralized
mechanisms such as Carrier Sense Multiple Access (CSMA),
enabling implicit coordination between nodes. While such
techniques are easy to implement and quite efficient for small
networks, they lead to highly inefficient resource usage in
larger networks (e.g., when a mesh network is constructed
out of WiFi nodes). In this paper, we provide two examples
to make the case that implicit coordination need not lead
to inefficiency, showing that decentralized mechanisms that
use learning and memory can be as effective as centralized
and explicit coordination mechanisms, while minimizing the
overhead required for coordination.

Our first example is that of maintaining network-wide
timing synchronization for the purpose of time slotted multiple
access. We show that it is possible to exploit the timing
information implicit in ongoing communication to jointly
adapt the clock phases and rates at each node. Each time a
node receives a packet, it measures the difference between

the expected and actual time of reception in order to estimate
the difference between its clock and that of the transmitter. A
node adjusts its clock phase each time it receives a packet, but
adapts its rate on a slower timescale by exploiting memory.
We show the efficacy of this decentralized scheme for typical
traffic patterns, and also investigate the minimum amount of
communication required for it to work. The latter also sheds
light on the minimal overhead required for maintenance of
synchrony for networks using explicit synchronization beacons
(which might be necessary for networks with very sparse
communication patterns, such as sensor networks with severe
energy constraints).

The proposed algorithm has some similarity to prior consen-
sus [1] style algorithms [2]—[4], but the latter require explicit
signaling. Firefly-inspired synchronization [5] can be adapted
for implicit synchronization, but it is only designed for phase
synchrony, and does not handle either propagation delays or
oscillator skew.

Our second example is a distributed MAC protocol, first
introduced in [6], that employs memory to achieve implicit
transmit-receive coordination and efficient spatial reuse, as-
suming that network-wide time slotting is available (e.g.,
using the synchronization maintenance algorithm in our first
example). While this approach is generally applicable, we
focus on the specific example of a 60 GHz network with highly
directional links, where implicit coordination is challenging
because of the deafness resulting from directionality. We show
that a node’s transmit and receive history with each neighbor
provides feedback for implicit coordination, and persistent
use of given slots for communication with a given neighbor
leads to approximate TDM schedules with high medium
utilization, without incurring the overhead of explicit network-
wide coordination.

Prior work on using memory for implicit coordination for
MAC includes [7], which focused on omnidirectional networks
carrying periodic traffic. Networking for mesh networks with
directional links has been studied before (e.g., see [8]-[13]),
but typically two kinds of links are used: omnidirectional
links for coordination and then directional links for enhanced
performance. In contrast, the proposed MAC provides a single
mechanism for implicit coordination which is broadly appli-
cable. While we focus on illustrating how well this works
for highly directional links (where prior protocols would fail),
we believe that further investigation would show that similar
ideas work for enhancing the performance networks with

omnidirectional links as well ([7] provides a glimpse of this in
a somewhat constrained setting of voice over mesh networks).
Putting these two examples together yields a framework
for efficient resource utilization in large-scale mesh networks,
using time slotted multiple access, but a detailed simulation
of such a system is beyond the scope of the present paper.

II. DISTRIBUTED IMPLICIT SYNCHRONIZATION

Synchronizing nodes to the accuracy required for commu-
nication is typically done in two stages — first, by establishing
and then, by maintaining synchrony. At startup, the nodes
are assumed to be completely asynchronous; therefore, an
explicit synchronization mechanism is used to synchronize the
network coarsely. For example, a gateway node broadcasts its
time, enabling its one-hop neighbors to set their clocks. These
nodes then broadcast their times, enabling nodes further away
from the gateway to synchronize their clocks. By this process,
the network can be coarsely synchronized in a time interval
proportional to the diameter of the network. Since network
setup times on the order of a few seconds — much larger
than the timescales of communication — are acceptable, and
establishing synchrony is a one-time effort, this process is not
expected to be a bottleneck. The main challenge in maintaining
synchrony is the variation in clock rates across nodes because
of manufacturing imperfections and temperature changes.
They cause the clock phases at different nodes to drift apart,
tending to destroy the established synchrony. We propose
an algorithm to restore synchrony by leveraging the timing
information present in the ongoing communication, thereby
minimizing the need for explicit synchronization beacons.
Synchronization based on implicit timestamps: Suppose
that node NV; transmits to its neighboring node N in slot s.
Since this is a TDM-based network, the transmission begins
when N;’s clock equals sT;,¢. Suppose that the time at which
N starts receiving this packet is ¢, (after subtracting out the
propagation and processing delays that can be estimated in the
startup phase). \V; can now conclude that its clock is ahead
of N;’s clock by ¢; — $T0¢. Thus, A obtains an estimate
of its clock error with respect to N; without any explicit
timing related signaling. The receiving node N adjusts its
clock phase and frequency based on such implicit timing
error measurements in order to drive the network towards
synchrony. Note that such adjustments are coupled through
the network transmission schedule — the changes made by
N based on the timing of its received messages impact the
times at which it transmits, and hence the adjustments made
by nodes who receive these transmissions. We now state the
phase and frequency adjustment rules used by the nodes and
then provide the intuition behind them (also see Figure 1).

e Phase Adjustments: Suppose that N transmits to N in
slot s. Let the times on N;’s and \/;’s clocks when N; begins
this transmission be ;[s] and ¢;[s] respectively. \; implicitly
estimates that its clock is ahead of NV;’s clock by ¢;[s] — ¢;[s]
and makes an instantaneous phase jump in order to reduce the
phase error with respect to N; “quickly”. Denoting the clock
phase at \; before and after the phase jump by ¢} [s] and

) Round 1 Round 2
[Node 1
= . A
9~ ’
s
n
<
=
A~ Node 3
e,
[}
N
=
=
—
=}
Z.
Ny — N3
! L I |
T T T T T >
Ty Maw 3Tao ATy Taw L
Fig. 1. Nodes make phase jumps each time they receive a packet. However,

they change their frequencies (slope of the lines) only at the end of a round
consisting of many slots.

¢ [s] respectively, we have,

o1 [s] = @5 [s] + Blpils] — ¥ [s)) (1)

where 0 < 8 < 1 is a tunable parameter.

While this phase adjustment reduces the phase error

between N; and N, it might worsen the phase error
between N, and a different neighbor Nj. Nevertheless,
with “sufficient” bidirectional communication and all nodes
making such adjustments, these phase jumps tend to keep
the synchronization error between neighboring nodes under
control.
o Frequency Adjustments: In addition to the phase
adjustments, nodes also adjust their frequencies based on
the implicit timing error measurements so to attain the
long-term benefits of network-wide synchrony in both phase
and frequency. However, the frequency adjustments occur on
a slower timescale when compared to the phase adjustments —
nodes adjust their frequencies only once per round, consisting
of a large number of slots. The frequency adjustment rules are
intuitive and can be summarized as follows: Each node looks
for a trend in the phase errors it observes with its neighbors
over a round of slots. If, despite all the phase adjustments
it makes, node N; consistently finds that its clock is “well
ahead” of its neighbors’ clocks over a round, A; concludes
that its clock frequency is larger than the average frequency
in the network. Node N; then reduces its clock frequency
by pu at the end of the round. Similarly, nodes which find
their clock phases “well behind” those of their neighbors’,
increase their frequency by g at the end of a round. This
process is repeated over multiple rounds to achieve frequency
synchrony.

Let node N; receive
neighboring node N; in n,;; slots within a round
that consists of Sp slots. We label these slots
sji(1),...,855i(t), ..., Sj—i(ni;) respectively. Node
N; adjusts its frequency at the end of the round of Sg slots

implicit timestamps from its

N
3
=]
o
=]

—4-Averaged System| .
-* Actual System A

n
=}
S

o

=)

—+-Averaged System|
- Actual System e

20 40 60 80
Number of Nodes

(b) Grid Topology

@
=}

20 40 60
Number of Nodes

o
S

o

=}
N
=

Avg. of worst error
between neighbors (ns)
Avg. of worst error
between neighbors (ns)
IN
o

o
o

=

80

=)

(a) Ring Topology

Fig. 2. Worst error between neighbors for the actual system and the averaged
system with only phase adjustments in a directional network.

based on an estimate of its excess frequency — the difference
between its clock frequency F; and the network wide average
F. N; estimates its excess frequency, denoted by b by the
sum of the observed phase errors with all its neighbors over
the entire round,

nij

0y = 5% Yo Y el = eslsimi(] @)

JENbr(i) t=1

If the excess frequency estimate 6; falls within a “dead zone”
of width € (i.e. |(§Z| < ¢€), node N; is ambivalent about whether
its frequency exceeds/falls below the average frequency in
the network. In this scenario, node N; does not change its
frequency. However, when node ; is confident that its phases
are “well ahead” of its neighbors’ (51' > ¢), it decreases its
frequency by u (and vice versa for i < —e).

Convergence: An exact analysis of this algorithm is com-
plicated by the fact that the neighbor from whom a node
receives packets varies across slots. However, we can provide
fundamental theoretical insight by analyzing the evolution of
the system “on the average”. In such a fictitious averaged
system, each node adjusts its clock phase in every slot based
on a weighted average of the phases of all its neighbors.
The weights are chosen based on the transmission schedule
in the actual system, with clock phases of neighbors who
communicate more frequently being given a larger weight. We
show that the rules described above for phase and frequency
adjustments lead to synchrony in the averaged system and
also obtain rules of thumb to choose the parameters ¢ and
1. We do this in two stages : first, by choosing a round to be
“sufficiently long”, we show that each node can estimate its
excess frequency — based on (2) — to an arbitrary accuracy .
We then choose the width of the dead-zone e to be larger
than the sum of the frequency adjustment step-size p and
frequency estimation error), so that we can accommodate
wrong frequency steps and frequency estimation errors. From
this, we can show that the frequencies converge to a window
of width smaller than 2(e + p + x). Since p and x can be
chosen freely — and therefore, made arbitrarily small — we can
achieve frequency synchrony to any desired accuracy.
Overhead due to propagation delay: We now quantify the
fundamental overhead due to propagation delay that serves as a
benchmark against which we can characterize the performance
of our algorithm. Consider a network consisting of three nodes,

labeled A, B and C, equipped with synchronized clocks and
operating in a Time Division Multiplexed (TDM) fashion. We
assume that neighboring nodes are located within a distance
dmay Of one another. Suppose that the packets transmitted in
each slot are of duration W < Ty;,; and the distance between
A and B is dap. Consider a scenario where B receives a
packet from A in slot s and then, transmits to C' in slot s+ 1.
Therefore, A begins its transmission at ¢ = sTg:, and B
completes reception of this packet after an interval of W+ dATB
(corresponding to the sum of the propagation delay and the
packet duration) at tepg = sTs10t + W + “"“TB, where ¢ denotes
the speed of light. Because of the half-duplex constraint, B
must complete reception from node A, in order to be “ready”
for the transmission in the subsequent slot to C, beginning at
tstart = (8 + 1)Tsi0t. Therefore, we need teng < tstart, O,

Tslot > W+ dA% (3)
Setting the distance between A and B to the maximum value
dmazs We see that a slot must include a “silence period”, at
least of duration d,,,. /¢, in addition to the data transmission
time W. Indeed, we can show that a silence period of
dpmaz/c is sufficient to maintain TDM-based communication
in a general network with half duplex nodes. Therefore, the
fundamental overhead due to propagation delay, called the
guard time, iS Tguard = dmae/c. For the envisioned mesh
network with a maximum link range d,, 4, = 100 m, the guard
time Tyyqra = 1/3 ps &~ 333 ns.

The guard time derived above is sufficient to sustain com-
munication with ideal clocks — clocks that are synchronized in
phase across nodes and run at the same frequency. However,
some additional guard time is necessary to tolerate synchro-
nization errors and sustain communication until the network
reaches synchrony (via the implicit synchronization scheme).
We use this additional guard time as a metric to quantify
the performance of our algorithm by comparing it against the
overhead due to propagation delay.

Scalability of phase-only updates: We first investigate a
scheme where nodes only adjust their phases and not their
frequencies (a special case of phase-frequency adjustments
with ¢ = 0). This scheme is particularly attractive from
an implementation standpoint because of its simplicity —
when the clocks are implemented in software, recurrent phase
adjustments simply correspond to altering the contents of a
register occasionally. However, the downside to such phase-
only adjustments is that the clock phases can never converge
completely and always leave behind an irreducible phase error.
The magnitude of this residual phase error between neighbor-
ing nodes is precisely the additional guard time required for
successful communication. It depends on the distribution of
frequencies across nodes in the network, in addition to the
network size and topology. For a given network topology,
we estimate the guard time conservatively by choosing a set
of “bad” frequencies that maximize the phase error between
neighbors. The bad frequencies are chosen using a linear
program that optimizes the phase error between neighbors

2
=}
5]

-

—+-16 Nodes
-#-36 Nodes
—=64 Nodes

—+-16 Nodes
-*-36 Nodes

®
=)
©
o

—=64 Nodes

@
]
@
=}

S
o

Avg. of maximum network
wide frequency error(ppm)
n
=1

Avg. of maximum network
wide frequency error(ppm)

o
[N}
o

=)

0.5 1 1.5 25 3 0 0.5 1 1.5 2 25 3
Slot Index x10* Slot Index x10*

(a) Ring topology (b) Grid topology

Fig. 3. Network wide frequency error with ring and grid topologies.

®
=

—4-16 Nodes
-®-36 Nodes
% 64 Nodes

-4-16 Nodes
-8-36 Nodes
3001 =64 Nodes

@
o

n
IS

g, 5

0.6 1.2 1.8 24 3
Slot Index x10*

(b) Grid Topology

o

0 0.6

=]

Avg. of worst phase error
between neighbors (nanoseconds)
5
o
Avg. of worst phase error
between neighbors (nanoseconds)
IS
(=]

1.2 1.8 24 3
Slot Index x10*

(a) Ring Topology

Fig. 4. Worst phase error between neighbors in ring and grid topologies.

in the averaged system. This provides a lower bound to the
worst-case error in the actual system, averaged over multiple
realizations of the random transmission schedule.

We present the results for networks of varying sizes, set
in ring and grid topologies, with parameters typical of 60
GHz networks; for example, we choose the slot duration
Tsiot = 10us and the skews at different nodes range from
-50 ppm to 50 ppm. From Figure 2, we make two immediate
observations — (1) the averaged system provides a lower bound
to the phase errors in the actual system and (2) the worst-
case phase error between neighbors grows with the size of the
network. The worst-case phase error grows with the number
of nodes N as N33 and N-87® for networks set in ring and
grid topologies respectively.

From Figure 2, we see that the error between neighbors in a
64 node network set in a ring topology can be as large as 220
ns. Thus, the additional guard time needed to accommodate
synchronization errors in such networks is 2/37% of the
fundamental overhead due to propagation delay (333 ns).
On the other hand, for small directional networks in a ring
topology (say, 16 nodes) or reasonably large networks in a
grid topology (36 nodes), we see that the largest phase error
between neighbors is only 40 ns. In this case, the increase in
the overhead is only 12 %, which is perfectly tolerable. To
summarize, phase-only adjustments with implicit timestamps
may suffice in small mesh networks with linear topologies
or moderately sized meshes in grid topologies, but frequency
adjustments are necessary for large networks, especially in
linear topologies.

Phase-frequency adjustments in saturated networks: To
quantify the performance of the proposed phase-frequency
adjustment scheme, we consider a saturated network — one
with a lot of ongoing communication. Such networks are
well-matched to the proposed implicit timing synchronization

scheme — since a large number of packets flow through
the network, nodes are able to make implicit timing error
measurements frequently. Therefore, nodes adjust their clock
phases and frequencies often, thereby increasing the rate of
convergence towards synchrony.

We simulate mesh networks set in ring and grid topologies
with the following parameters — noise chosen uniformly from
[-5 ns, 5 ns] is added to each implicit timestamp measure-
ment and nodes adjust their frequencies once in 200 slots.
The results are shown in Figures 3 and 4 and we make
the following observations : (1) The maximum difference in
frequencies between any two nodes in the network settles to
about 10 ppm (Figures 3(a) and 3(b)) and this value is virtually
independent of the size and topology of the network. Since
the network-wide frequency error is on the order of 100 ppm
initially, the phase-frequency adjustment algorithm decreases
the frequency error by a factor of 10. (2) After the phase-
frequency adjustments, the maximum phase error between any
pair of neighbors in the network is only between 6.25 ns and
10 ns (Figures 4(a) and 4(b)). Crucially, the largest phase
error between neighbors does not scale up with the size of the
network. Thus, the additional guard time required to tolerate
synchronization errors after the phase-frequency adjustments
is only 3 % of the fundamental overhead due to propagation
delay. Therefore, the proposed algorithm synchronizes satu-
rated networks without any explicit timing related signaling.
Communication required for implicit synchronization:
When there is little ongoing communication in the network,
the time interval between successive occasions on which node
N, receives a data packet from its neighboring node N
can be quite large. In this interval, uncompensated frequency
differences between N; and N can cause N;’s phase to drift
away from that of N, leading to substantial phase error.
Unless the guard interval is large enough to tolerate such
large errors, communication between N; and ./\fJ will be un-
successful. Repeated instances of unsuccessful communication
causes the system to spiral into complete breakdown — nodes
will no longer receive implicit timestamps (since this relies
on successful communication), causing the synchronization
accuracy to worsen further. Therefore, choosing an adequate
guard time is of paramount importance and we now charac-
terize the necessary guard time as a function of the amount of
communication in the network.

We consider mesh networks of 16, 36 and 64 nodes set in
ring and grid topologies. We designate some of these nodes
to be gateways so that no node is more than 3 hops away
from a gateway. We vary the probability of a node having
a flow to/from its gateway to control the amount of data
flowing through the network. First, we allow the nodes to
only adjust their phases and calculate the largest phase error
between any pair of neighbors (this is exactly the additional
guard time needed to sustain communication). From Figure
5, we see that the phase error decreases with increasing
probability of a link being active. Let p denote the probability
that a link is active. When p = 0.01, we see that the phase
error can be as large as 460 ns, which is nearly 1.5 times

500

——16 Nodes|
——36 Nodes|
| —=—64 Nodes|

—o—16 Nodes
——36 Nodes|
400 —=—64 Nodes

Timing Error (nanoseconds)
Timing Error (nanoseconds)

0.2 0

0.05 0.1 0.15 0.05 0.1 0.15
Probability of link activity Probability of link activity

(a) Ring topology (b) Grid topology

Fig. 5. Phase error between neighboring nodes as a function of the
communication in the network.

3

3

g 3

00f

&

8

Timing Error (nanoseconds)
Timing Error (nanoseconds)

8

=)

2 25 05
x10°

0 05 1

1.5 1 1.5 2
Slot index Slot Index x10"

() p =001 (b) p =0.05

Fig. 6. Evolution of the phase error over many slots with phase-frequency
adjustments.

the fundamental overhead due to propagation delay. On the
other hand, when p = 0.1, the phase error is 50 ns, which
is only 15 % of the overhead due to propagation delay.
Thus, each link needs to be active roughly 10% of the time
for the additional guard time to be tolerable — the activity
on the link could be due to data packets flowing through
the network or explicit synchronization beacons. Designing
such explicit synchronization beacons to augment the ongoing
communication is an open issue.

Next, we consider phase-frequency adjustments in a 36-
node network set in a grid topology. We plot the largest phase
error between any two neighbors in a single realization in
Figures 6(a) and 6(b) for p = 0.01 and p = 0.05 respectively.
We see that the phase errors converge to 10 ns (approximately)
—only 3 % of the overhead due to propagation delay — in both
cases, illustrating the benefits of frequency adjustments.

We now present a MAC protocol that uses the slots con-
structed by the synchronization scheme and simple learning
rules to converge to TDM-like schedules.

III. MEMORY-GUIDED DIRECTIONAL MAC (MDMAC)

Because of deafness arising from the high directionality of
60 GHz millimeter (mm) wave links, carrier sensing becomes
ineffective for monitoring transmission activity in a node’s
neighborhood. Consequently, the only information readily
available to a 60 GHz mesh node is the outcome of its own
transmit and receive attempts to its neighbors. The novelty of
MDMAC lies in employing simple learning rules at each node
based solely on the memory of its transmit/receive outcomes to
converge to time division multiplexing (TDM) like schedules.
Given the low spatial interference, nodes do not account for
the effect of their transmissions on their neighbors. However,

mechanisms for dynamically adapting TDM schedules are
built in. This allows MDMAC to promptly react to changes
in traffic patterns and interference loss (in the few cases when
it does occur), and helps avoid locking into grossly unfair
schedules.

We now outline the functioning of MDMAC: say node A
wishes to initiate a transmission to node B. Node A randomly
picks one of the free slots in a frame to attempt a packet
transmission. If node B successfully receives the packet, it
responds with an ACK to A, and both nodes mark the slot to
be used for communication from A to B over future frames.
This leads to an implicit slot reservation. In case A’s initial
transmit attempt to B fails, A flags the slot as “blacklisted” for
future transmit attempts to B. The A—B reservation persists
until A has no more packets, or there is repeated packet loss,
or if either A or B explicitly terminates the reservation. Such
a simple approach, when followed by all nodes, can lead to an
approximate TDM schedule, but it suffers from a number of
unfairness issues. For example, a node that starts late can get
locked out in case of a saturated network. To avoid locking
into grossly unfair schedules, we introduce a probabilistic state
reset mechanism, where each node resets a slot state (transmit/
receive/ blacklisted for a given neighbor) with a non-zero
probability. This randomization of state life-times results in
enough churn that allows the TDM schedules to be rearranged.
Approximate Protocol Model: We now present a Markov
chain fixed-point analysis to study the effect of different
protocol parameters on the performance and compute the
expected medium utilization for MDMAC.

We focus on a “typical” node (e.g., in the interior of a large
network) with pseudowired links to all its neighbors. Each
node maintains state information on each of its outgoing and
incoming links for each slot. We assume that the state for
each time-slot in a single frame evolves independently, and
develop a Markov model for a given slot over multiple frames.
Considering a saturated network where each node always has
packets for all its neighbors, we assume that the schedule
activated over each slot is chosen randomly and independently
from other slots.

Outgoing links can be in “Transmit” (T), “Idle” (I) or
“Blocked” (B) state, where a node can contend for a new
reservation only if the outgoing link is in the “Idle” state.
For incoming links, the state space comprises only two states:
“Receive” and “Idle”. We introduce the “Unavailable” (U)
state, which means that the outgoing link cannot contend
for that slot because some other link belonging to that node
is in the “Transmit” or “Receive” state. The “Unavailable”
state allows us to capture and decouple the dependence of
state of one link on the states of all the other links within
a single node. Having augmented the link state space with
the “Unavailable” state, we approximate the states of different
links for a given node (in a given time-slot) as independent. We
also approximate the state of the links of a node as independent
of the state of the links for all other nodes. Clearly, this is not
strictly true: a “Transmit” state at node A sending to node
B automatically implies that node B is in “Receive” state for

Blocked

MDMAC model: state diagram for an outgoing link.

N\
.

Fig. 7.

that slot. The preceding decoupling approximations allow us to
focus on state transitions for a typical outgoing link to obtain
performance insights, which are close to the simulation results
presented later in this section.

Fig. 7 presents the state diagram for an outgoing link. Let
P, be the steady state probabilities of state s € {T,I, B,U}.
We denote the transition probability from s; to s2 as Ps,s,.
Let N denote the number of neighbors for a “typical” node.
We now introduce a new tunable protocol parameter: the
listening probability p; which is the probability that a node
decides not to contend for transmission on any of its outgoing
links. Thus, the probability that a node with all links idle
chooses to transmit over a given link (each link is chosen
with equal probability) is py, /N, where p;, = 1 — p;. The
steady-state probabilities for any state s satisfy:

Py=Y Pyl @)

Assuming that the neighbors of the typical nodes are them-
selves typical, we first consider a simple two-node network.
Modeling a Two-Node Network: For an outgoing link from a
node, the Unavailable state means that the incoming link from
the neighbor is active, the Idle state means that the incoming
link is Blocked or Idle, and the Blocked state means that the
incoming link is Blocked or Idle. To model probabilistic state
resets, let T and Tk denote the average transmit/receive
slot and blocked slot lifetimes. Therefore,

We now compute Prp: for this state transition, the node
chooses to contend in the slot rather than listen (probability
i) AND either the receiving node is in Blocked state, OR
the receiving node is in Idle state AND chooses to listen
(probability p;). Therefore,

5
Thiock ©)

Py Pg
Prr = pio (PI e + P +PB> (6)
where the independence approximation is applied to infer that
given the reference link’s Idle state, the conditional probabil-
ities of the incoming link being in the Blocked or Idle states
are proportional to the respective steady-state probabilities. We
can evaluate the other probabilities in a similar fashion.

o pt:rplPI ptxPI p%’I'PI
_P[-f—PB7 P+ Pg’ P+ Pg’
We now present an iterative algorithm to compute the
steady-state probabilities in Procedure 1.
Consistency demands that the steady-state probabilities of
the Transmit and Unavailable states should be equal for the

Pry BU = B = @)

Algorithm 1 State probabilities computation

1: Initialize P =1, Pr = Py = Pg = 0.

2: Use the current values of Ps and (5), (6), (7) to compute
the transition probabilities P, .

3: Use the values for Py obtained in Step 2 and (4) along
with the normalization condition ES P, =1 to solve for
the state probabilities and update the values of Ps.

4: Return to Step 2 until convergence.

two-node network because of symmetry, and indeed we find
that this is always the case. We now compare the analytical
and simulation results for the expected link utilization for
successful transmissions for each node. The total medium
utilization in this case would be the sum of the transmit
link utilization for the two nodes sharing the link capacity.
The steady-state probabilities calculated from the Markov
chain model are: Pr=Py= 0.489, Pr= 0.015 and Pg= 0.007.
QualNet [14] simulations of the protocol for this setting yields
the fraction of the successful transmit and receive state slots as
0.492 each, which demonstrates a close match. The other state
fractions are Blocked: 0.013 and Idle: 0.002 - the differences
correspond to additional refinements embedded into the actual
MDMAC QualNet protocol model.

Modeling Arbitrary Networks: The preceding analysis can
be extended to compute the state probabilities {Ps} of a
“typical” link for an arbitrary network, i.e., for nodes with N
bi-directional links. Note that unlike the two-node network, a
link being in Unavailable state does not automatically mean
that the corresponding incoming link is active; any of the other
2N — 1 links from/to the same node can be active. We first
derive an expression for Prr. For this transition, the node must
choose to contend for transmission (probability py,) rather
than to listen, and pick the reference link (which is in the
Idle state) out of the subset of the /N outgoing links that are in
Idle rather than Blocked state. The probability of any outgoing
link other than the reference link being in the Idle state is
Pr/(Pr + Pg). Thus, the probability p. that the reference link
is chosen to contend is given by:

B Nz‘:lN—1 P \"(P\ 1
pc—pmkzo k Pr+ Pp Pr+Pg) k+1’

where m = N —1—k. For the contention attempt to be success-
ful, the corresponding receiving link on the neighboring node
must be in the Idle or Blocked states, and the neighboring
node must choose to listen rather than contend to transmit
on one of its Idle outgoing links (if there are any Idle links,
or else all its outgoing links must be in Blocked state). The
corresponding probability (p,1) is

pri = pi(Pr+ Pp(l — (5552)+ Pp (p,ljrinB)
Furthermore, the receiving node must choose the reference
link out of all of its own other N — 1 neighboring nodes (also
“typical” nodes) that also happen to be Idle and contending
for this slot (probability Prp.). The probability of this event

N-1

0.5

o
»
;
K
d
I
o
o
prt
Y
@
Il
o
O
N
~

. \,
\

P(Transmit)

@ ®
® ® *

Fig. 8. An example network
with 4 neighbors per node.

---(P},=0.01, Py =0.01)
__(P,=0.001, P, =0.002)

- _ \
—(P;,=0.001, P_ = 0.001) |

0.2 0.4 0.6

P

0.8 1

Fig. 9. Medium utilization
by node transmissions.

Pro 18 given by

N-1
N -1 (Plpc)k
r p— - 1_P c m’ 8
Pr2 Z(k)k;+1(IPe) ®)
k=0
where m = N — 1 — k. We finally have
PIT = PcPriPr2 (9)

In case the transmission attempt is not successful, the
reference outgoing link is forced into the Blocked state. We
obtain Prg as

PIB - p('(l _prlpTQ) (10)

We now define the probability (p,) that at least one of the
neighbor nodes of the reference node attempts to transmit as
pa = 1 — (1 — Prp.)N. For Py, the reference node must
either successfully transition to the Transmit state on one of
the other IV — 1 outgoing links, or it must successfully receive
from one of its contending neighbors. This leads to

Y

For Ppy, the transition to the Unavailable state can happen
either if the reference node successfully transitions to the
Transmit state on one of its other N — 1 outgoing links, or if
it successfully receives from one of its transmitting neighbors.
Therefore,

Py N—1
Py =piz |1 — | ——— 1D
BU pt.,< <PI+PB>)plpz—i-

a (M Pr + Pp Pr+ Pp

12)

Pro = Ptz — Pe)PriPr2 + PiPa

The other transition probabilities (Prr, Pyr, Ppr) can be
obtained from (5). Procedure 1 can again be used to compute
the steady-state probabilities {Ps}. Note that consistency
requires that Py = (2N — 1) Pr.

We apply our model to an example six-node network
in Fig. 8 where every node has four neighbors with link-
saturating flows in each direction. The steady-state medium
utilization for successful transmissions from each node is
obtained as 0.426. Packet-level simulation of the same scenario
yields 0.43. We now investigate the effect of the following
parameters on the performance of MDMAC (1) Pr;, Pyy,
and Ppr; and (2) p;, under saturated traffic conditions and
a given network node density. We consider the probabilities
Pr; and Py; such that the average transmit/receive state

=05 5
8% £1o
S 20/ MDSA 2 g R
3 | EIVDMAC 2 A, A & . a
%15 Cams 3 6 & PN A . A *
210 z .
= o
£ 5 b 5 * 25 node topologies
'aE> <y A 50 node topologies

T
=Z 0 25 £ GO 5

5
Number of nodes Topology number (simulation seed)

Fig. 10. Aggregate throughput. Fig. 11. Missed transmit opportunities.

46 gzoo WDsA 2 0.6[MDSA

C | mbsA < 150 _IMDMAC £ |Owvomac

24 DMDMAC % é) 0.4

5 <100 >

32) g0.2

£ X

: : H <

@0 o 50 055 50 25 50

Number of nodes Number of nodes Number of nodes

Fig. 12. Throughput. Fig. 13. Total delay. ~ Fig. 14. Delay jitter.

lifetime Ty, is in the range of 100 to 1000 frames, i.e.,
Pry, Pyr values of 0.01 to 0.001. In order to understand
the effect of tuning the Blocked state lifetimes, for each
value of Pr;, we consider Pg; = Pry or Pg; = Pr;/2.
Fig. 9 shows the expected total medium utilization by a node’s
transmissions to all its neighbors. We find that Pry=0.001 and
Prr= 0.002 yield the highest medium utilization among the
parameter choices that we have considered. Also, the medium
utilization is relatively insensitive to the value of the listening
probability p; (in the range 0.1-0.7). We observe similar trends
for medium utilization over a large range of neighbor densities,
and therefore set Pry=FPyr= 0.001 and Pg;= 0.002 for our
evaluation. These relatively large state lifetimes result in less
throughput loss due to churn, while offering enough possibility
for rearrangement of schedules to ensure fairness. Although
our analytical guidance for choice of Pr;, Py and Ppy is for
saturated traffic, our simulations indicate that these values are
effective for unsaturated multihop mesh traffic as well.
Explicit State Reset: In addition to probabilistic state reset
and non-persistent contention, we devise an explicit state
reset mechanism to enable a quicker response to changing
traffic patterns and maintain fair bandwidth allocation to each
neighbor. When the fraction of transmit or receive slots at a
node exceeds a threshold, the node successively resets the state
of a randomly picked slot (i.e., releases the slot to the available
slot pool) among the committed slots corresponding to the
neighbor that holds the highest share of the committed transmit
or receive slots. Basically, a node switches to an “alert” mode
when the bandwidth demand starts to approach the total link
capacity, and ensures that the bandwidth allocations among
competing neighbors are not grossly unfair.

We now present a sampling of performance results for MD-
MAC obtained via packet-level simulations over the QualNet
simulator [14] with the PHY and antenna modules modified
to model 60 GHz links.

Fig. 10 compares the aggregate network through-
put achieved with MDMAC against directional slotted

Aloha (DSA) protocol and a Greedy Maximal Scheduling
scheme [15], considering saturated network traffic for random
25 and 50 node topologies over a 500m x 500m flat terrain.
The aggregate network throughput for MDMAC is much
higher than DSA, and is comparable to that achieved with
centralized Greedy Maximal Scheduling.

Fig. 11 presents estimates of the fraction of total transmit
opportunities “missed” by MDMAC over different simulation
instances, and shows that on average the TDM schedules
generated by MDMAC are quite efficient: they are within
6% and 7% of the corresponding largest cardinality maximal
matchings on the network graphs for the 25 and 50 node
topologies, respectively.

We now look at MDMAC’s performance considering asym-
metric multihop mesh traffic with randomly chosen flows to
and from the assigned gateway nodes to other mesh nodes.
Fig. 12 shows that MDMAC attains a significantly higher
aggregate throughput than DSA (35% and 52% for the 25 and
50 node topologies, respectively). A higher fractional gain over
the 50 node topologies demonstrates that MDMAC is effective
despite the increased contention and interference resulting
from the high node density. Figs. 13 and 14 offer insight
into the QoS performance in terms of the much lower end-
to-end delay and delay jitter for the received packets relative
to that with DSA. The end-to-end delay value is low enough
to satisfy the typical Internet traffic delay requirements. The
TDM-like schedules attained via MDMAC lead to low jitter.

IV. CONCLUSIONS

Our two examples show the promise of implicit coordination
mechanisms in the design of network protocols: we show that
phase/frequency adaptation based on existing communication
patterns can lead to network-wide synchronization, and that the
decentralized MDMAC protocol can yield efficiency close to
that of centralized TDM. Important topics for future research
include integrating such concepts into a comprehensive suite of
protocols for mesh networks that include network discovery,
routing and flow control. While highly directional 60 GHz
mesh networks represent perhaps the most exciting applica-
tions of these ideas, we believe that the concepts presented
here may also lead to performance gains for mesh networks
with omnidirectional links at lower carrier frequencies. Of
course, much further effort is required to validate this asser-
tion.

Both of the mechanisms presented here are examples of stig-
mergy, where agents coordinate indirectly by modifying their
environment. Stigmergy is a powerful mechanism for large-
scale self-organization using local interactions, examples of
which abound in nature, including flocking/swarming, termite
building and food finding. The results here motivate a broader
research agenda of systematically designing stigmergic mecha-
nisms for solving problems of scale in communication network
design.

ACKNOWLEDGEMENTS

This work was supported by the Institute for Collaborative
Biotechnologies under grant DAAD19-03-D-0004 from the
US Army Research Office, and by the National Science
Foundation under grant CNS-0832154.

REFERENCES

[1] R. Olfati-Saber and R. Murray, “Consensus problems in networks
of agents with switching topology and time-delays,” IEEE Trans. on
Automatic Control, vol. 49, no. 9, pp. 1520-1533, 2004.

[2] R. Solis, V. Borkar, and P. Kumar, “A new distributed time synchro-
nization protocol for multihop wireless networks,” in Proc. 45th IEEE
CDC, San Diego, CA, USA, 2006.

[3] L. Schenato and G. Gamba, “A distributed consensus protocol for clock
synchronization in wireless sensor network,” in Proc. IEEE CDC 2007.

[4] P. Sommer and R. Wattenhofer, “Gradient Clock Synchronization in
Wireless Sensor Networks,” in Proc. ACM/IEEE IPSN 09, 2009.

[5] R. Mirollo and S. Strogatz, “Synchronization of pulse-coupled biological
oscillators,” SIAM J. on Appl. Math., pp. 1645-1662, 1990.

[6] S. Singh, R. Mudumbai, and U. Madhow, “Distributed Coordination with
Deaf Neighbors: Efficient Medium Access for 60 GHz Mesh Networks,”
in Proc. IEEE INFOCOM 2010, Mar. 2010.

[7] S. Singh, P. Acharya, U. Madhow, and E. Belding, “Sticky CSMA/CA:
Implicit synchronization and real-time QoS in mesh networks,” Ad Hoc
Netw., vol. 5, no. 6, pp. 744-768, 2007.

[8] R. Ramanathan, J. Redi, C. Santivanez, D. Wiggins, and S. Polit, “Ad
hoc networking with directional antennas: a complete system solution,”
IEEE J. Sel. Areas Commun., vol. 23, no. 3, pp. 496-506, March 2005.

[91 Y.-B. Ko, V. Shankarkumar, and N. Vaidya, “Medium access control

protocols using directional antennas in ad hoc networks,” in Proc. IEEE

INFOCOM 00, vol. 1, 2000, pp. 13-21.

A. Nasipuri, S. Ye, J. You, and R. Hiromoto, “A MAC protocol for

mobile ad hoc networks using directional antennas,” Proc. IEEE WCNC

2000, vol. 3, pp. 1214-1219 vol.3, 2000.

[11] M. Takai, J. Martin, R. Bagrodia, and A. Ren, “Directional virtual carrier

sensing for directional antennas in mobile ad hoc networks,” in Proc.

MobiHoc 2002. New York, NY, USA: ACM, 2002, pp. 183-193.

T. Korakis, G. Jakllari, and L. Tassiulas, “CDR-MAC: A protocol for

full exploitation of directional antennas in ad hoc wireless networks,”

IEEE Trans. Mob. Comput., vol. 7, no. 2, pp. 145-155, Feb. 2008.

R. R. Choudhury, X. Yang, R. Ramanathan, and N. H. Vaidya, “On

Designing MAC Protocols for Wireless Networks Using Directional

Antennas,” IEEE Trans. Mob. Comput., vol. 5, no. 5, pp. 477-491, 2006.

[14] QualNet, v4.1. [Online]. Available: http://www.scalable-networks.com

[15] M. Leconte, J. Ni, and R. Srikant, “Improved bounds on the throughput

efficiency of greedy maximal scheduling in wireless networks,” in Proc.
ACM MobiHoc ’09. New York, NY, USA: ACM, 2009, pp. 165-174.

[10]

[12]

[13]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

