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Performance Analysis of a Forward Link
Channel Estimation Method for
Wireless Multicarrier Systems
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Abstract—We present an effective method for time domain
channel estimation of wireless orthogonal frequency division
multiplexing (OFDM) system. Relying on a bent-pipe mechanism,
the mobile receiver sends a fraction of the received data back to
the base station which can then estimate both the forward link
and reserve link channel impulse responses. Given knowledge on
the forward link channel response, the resource rich base station
can employ effective adaptive modulation schemes to increase
OFDM system capacity. In this paper, closed-form expressions
for channel estimation Cramer Rao lower bound are derived for
the feedback system. Impact of feedback parameters on channel
estimation performance is discussed through Cramer Rao bound
analysis and simulation. Identifiability issues associated with
power loaded multicarrier systems are also addressed. Simulation
results on the proposed feedback channel estimation scheme are
shown.

Index Terms—Adaptive modulation, estimation, feedback com-
munication, frequency division multiplexing, wireless LAN.

I. INTRODUCTION

ORTHOGONAL frequency division multiplexing
(OFDM) has been well established as an effective

modulation scheme for high speed wireless transmission by
utilizing multi-carriers. In practical applications, broadband
OFDM wireless systems such as DVB, WiMAX and 3GPP
LTE must cope with severe frequency selective distortion on
the high data rate forward link (FL) channel. Indeed, forward
link channel estimation is needed for both precoding at the
transmitter and equalization at the receiver.

Conventional systems achieve OFDM channel identification
at the receiver by sending training data on predesignated pilot
subcarriers [1], [2], [3]. The channel frequency response on
data subcarriers are then estimated from the pilot subcarriers,
often via interpolation. As both data rate and discrete Fourier
transform (DFT) size grow in high speed multimedia wireless
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communication systems, complexity of channel estimation be-
comes a design concern for mobile receivers that often operate
on batteries. On the other hand, for wireless systems suffering
from severe frequency selective distortions, increasing pilot
subcarrier density may be necessary to accurately capture the
channel frequency response variation. Transmission of more
pilots consumes both power and bandwidth.

To fully exploit the available forward link channel capacity
and to achieve good system performance, channel information
is desired at the transmitter. It is well known that advanced
transmission strategies based on channel state information
(CSI), such as adaptive bit and power loading, and sub-
carrier allocation, are highly effective in improving multi-
carrier system performance [4]. To implement bit loading, the
base-station (BS) transmitter must acquire the information of
forward link channels. In conventional approaches, forward
link channel knowledge is achieved by letting mobile receivers
send back estimated channel parameters through a reliable
feedback channel [5]. This process consumes both power and
bandwidth of mobile units. Additionally, it also suffers from
feedback transmission errors. For these reasons, we generalize
the new framework of bent-pipe feedback channel estimation
developed for single carrier systems in [6], [7] to multi-carrier
systems. In our bent-pipe feedback approach to forward link
channel estimation, the mobile device sends back a fraction
of the received data to the base station which uses the data
to identify the overall round-trip channel (RTC) response.
We then apply a subspace algorithm to decouple the forward
link (FL) channel response and the reverse link channel (RL)
response.

In this work, we present a bent-pipe feedback channel
estimation method under adaptive modulation and channel
precompensation for OFDM systems. A major contribution
of this paper lies in the closed-form Cramer Rao lower
bounds (CRLB) analysis for the proposed bent-pipe feedback
channel estimates. The CRLB results hold for both single and
multi-carrier systems. A detailed analysis on the selection of
various design parameters and the impact of the selections on
channel estimation performance is also provided. Moreover,
we address the issue of channel identifiability when power
loading is deployed in the overall systems. We investigate, via
numerical simulations, how time variation in mobile channels
affects the proposed feedback scheme.

II. OFDM SYSTEM MODEL

A conventional single user OFDM transmission and re-
ception system [8] is shown in Fig. 1. Consider the trans-
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Fig. 1. A DFT-based OFDM system with cyclic-prefix.
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Fig. 2. An OFDM system with decimated feedback.

mission of a single block of information symbols, s =
[s(0) s(1) · · · s(Q − 1)]T over Q subcarriers. Denote xs as
the corresponding OFDM symbol where xs = Ws, with
W denoting the Q × Q IDFT matrix. A cyclic prefix of
sufficient length is included in each OFDM symbol xs to
prevent inter-block interference. At the channel output, after
removing the cyclic prefix and DFT, the received signal of the
k−th orthogonal subchannel is given by

r(k) = Hks(k) + v(k), k = 0, 1, . . . , Q − 1. (1)

Hk is the frequency response of subcarrier k, and v(k) is the
additive white Gaussian noise. The information data s can be
decoded from the received signal of (1) using simple 1-tap
frequency scaling.

In the context of wireless communications, our proposed
bent pipe feedback OFDM system is shown in Fig. 2. The
OFDM modulation and demodulation modules are defined
in Fig. 1. Suppose the forward link and the reverse link
transmission bandwidth are 1/T1 and 1/T2, respectively.
These transmission data rates are specified by the system.
Furthermore, T1 and T2 should be chosen such that they can
be expressed as T1/T2 = LK/M for some integers L, M and
K . For example, a popular FL to RL ratio for existing wireless
networks is 3:1, which can be realized by choosing L = 1,
K = 1 and M = 3. Putting into perspective of our bent-pipe
feedback scheme, M and K are the rate changing factors in
the mobile station, where M is the downsampling factor and
K is the upsampling factor. The mobile station (MS) samples
the FL output data at rate L/T1, and are matched to the RL
data rate using a decimator and an interpolator. The converted
data can then be multiplexed with the normal reverse link
data and sent back to the BS through the RL. We require
that integer L and M be coprime, although the decimation
and interpolation factor M and K need not be coprime. In
fact, they can be equal, which corresponds to the case when
forward link and reverse link operate at the same data rate.

When the oversampling ratio is L = 1, the forward link
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Fig. 3. Signal model of round trip data feedback for channel estimation.
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Fig. 4. Discrete signal path of the round trip feedback in OFDM systems.

channel is estimated at baud rate as in [6]. When a larger
integer L > 1 is chosen, fractionally-spaced FL response
can be estimated [7]. To equalize and decode the OFDM
data, T-spaced channel information is sufficient. However,
fractionally-space sampled algorithm may significantly im-
prove the estimation accuracy at a given data length [7].
The reverse link channel output is oversampled at rate P/T2,
where, similar to the forward link, P > 1 gives fractionally-
spaced reverse link channel impulse responses.

One key observation is that the mobile can directly sample
and retransmit the sampled but otherwise unprocessed OFDM
data on the reverse link without additional post-processing or
delay. Therefore, the signal path from the base transmitter
output, xs, to the base channel estimator input, y, has a similar
structure as the single carrier systems discussed in [7]. An
algorithm closely related to [6] [7] can be used in the OFDM
system to identify the FL and RL responses.

The feedback signal model of the OFDM system is shown in
Fig. 3, where the key difference with a single carrier system is
that the input to the channel, xs, is OFDM modulated. pf(t)
and pr(t) are the responses of the transmitter and receiver
filters for the forward link channel and reverse link channel,
respectively. cf (t) and cr(t) represent the forward link and
reverse link multipath channel impulse responses. w1 and w2

are the time domain additive white Gaussian noises. u models
the normal RL operational data. The feedback data can be
combined with the reverse link data via time-multiplexing.
Another option is to let the feedback data occupy the reverse
link training data slots, since reverse link pilots are no longer
needed.

By combining transceiver filters and multipath channels, we
denote the overall discrete FL and RL response as H(z) and
G(z), respectively. The discrete signal path of the feedback
data in the proposed system is shown in Fig. 4, with N =
KP . Next we present an FL and RL estimation algorithm, and
demonstrate its application in OFDM adaptive modulation.

III. FL CHANNEL ESTIMATION FRAMEWORK

This section provides the basics of our FL channel estima-
tion approach. Although the main approach has been presented
earlier in [6], the notations and the precise procedures are
reproduced here for OFDM systems in order to analyze and
derive the performance (Cramer-Rao) bound.



3028 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 8, AUGUST 2008

A. Estimation of RTC

Given access to both its transmitted data and the resulting
bent-pipe feedback signal, the base-station can estimate the
linear round trip channel. We assume that all signals and noises
in Fig. 3 are zero mean, white and mutually uncorrelated, as
is the OFDM signal xs.

Applying type I polyphase decomposition to H(z) and x,
we have [9] [10]

H(z) =
M−1∑
i=0

Hi(zM )z−i, (2)

xi(l) = x(lM − i), 0 ≤ i ≤ M − 1. (3)

Type II polyphase decomposition of G(z) and the RTC output
y yields

G(z) =
N−1∑
j=0

Gj(zN )z−(N−1−j), (4)

yj(l) = y(lN + N − 1 − j), 0 ≤ j ≤ N − 1. (5)

Given xi(j) and yj(l), we can estimate the (rank one) RTC
matrix transfer function [11]

F(z) =

⎛
⎜⎝ G0(z)

...
GN−1(z)

⎞
⎟⎠(H0(z) · · · HM−1(z)

)
, (6)

where the orders of Gj(z) and Hi(z) are given by

lg = � lG + 1
KP

� − 1 (7)

lh = � lH + 1
M

� − 1, (8)

in which lH and lG are the orders of H(z) and G(z), respec-
tively. �·� denotes ceiling operation. Note that the maximal
order of the individual elements of this polynomial matrix is
lf = lg + lh for

Fji(z) = Gj(z)Hi(z) =
lf∑

k=0

fji(k)z−k. (9)

We showed how the round trip channels Fji(z) can be
estimated in [11] using the least square approach. Here we
only provide the necessary notations to be used later.

Suppose n is the observation window size. Define

yj(k) = (yj(k) . . . yj(k − n + 1))T , (10)

f ji = (fji(0) . . . fji(lf ))T , (11)

and

Xi(k) =⎛
⎜⎝ xi(k) · · · xi(k − lf)

...
...

...
xi(k − n + 1) · · · xi(k − lf − n + 1)

⎞
⎟⎠ . (12)

Concatenating {Xi(k)} leads to the input data matrix that the
BS buffered for channel estimation

X(k) =
(
X0(k) X1(k) . . . XM−1(k)

)
. (13)

The j-th row of the RTC channel matrix to be estimated is
the stacked subchannel vectors, given by

f j = (f j0
T . . . f j(M−1)

T )T . (14)

Therefore, estimation of the j-th row of F(z) can be expressed
in the time domain as

yj(k) = X(k)f j + η, 0 ≤ j ≤ N − 1 (15)

where η is the noise vector and is uncorrelated with X(k).
As long as n ≥ M(lf + 1), the RTC parameters f j can be
solved in the least square sense,

f j = X(k)†yj , (16)

where (·)† denotes the Moore-Penrose pseudoinverse.

B. Decoupling of FL and RL

Once the RTC response is obtained, a subspace algorithm
similar to [12] can be applied to unravel H(z) and G(z) from
F(z) under channel assumptions. The details of the decoupling
algorithm is given in Appendix.

C. Identifiability Conditions

As shown in [6], once the RTC response is obtained, to
successfully extract FL channel H(z) and RL channel G(z)
from RTC F(z), at least one of the following conditions should
be satisfied.

Condition 1: The greatest common divisor (gcd) of the
set of polynomials Hi(z) is a pure delay z−d (d integer).
In addition, their maximum order is known.
Condition 2: The greatest common divisor (gcd) of the
set of polynomials Gj(z) is a pure delay z−d (d integer).
Furthermore, their maximum order is known.

With rich scatters either one of the conditions is satisfied with
probability one [13].

D. Knowledge Based Multipath Identification

The channel estimation algorithm we just described tries
to determine the entire combined channel response which
includes the transmitter pulse shaping filter and the receiver
matched filter. In most communication systems, however, the
only unknown is the multipath channel response. Utilizing the
known filter response has been shown to significantly lower
the problem complexity [11] [14]. It is simple to show that this
knowledge based algorithm [11] is applicable to the OFDM
system through fractionally-spaced sampling. The details are
given in the Appendix.

E. Discussions

As shown thus far, the proposed bent-pipe scheme enables
the OFDM transmitter to identify the FL channel directly. This
property is particularly advantageous in OFDM and DMT
systems as the channel knowledge can be utilized at the
transmitter, for adaptive modulation or power-loading.

In principle, given the FL channel estimate, the base station
can take over the 1-tap equalization from the receiver. In this
setup, the transmitter is responsible for channel estimation and
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the simple frequency domain scaling. It can be a useful scheme
when the mobile devices are resource-limited.

As shown in (13), the round trip channel is estimated from
the input matrix X(k), which should have full column rank if
the input data sequence xs is persistently exciting [15]. The
condition number of the covariance matrix of the OFDM data
X(k) is critical to the accuracy of the least square solution
for (15). It is well known [16] that the condition number is
upper-bounded by the maximum-to-minimum spectral ratio of
the underlying (OFDM) data signal. For single carrier and
uniformly modulated OFDM systems, the input data sequence
xs has a white power spectrum density and the covariance
matrix is well-conditioned. However, if power loading is used
on the frequency domain symbols s to control system capacity,
the condition number of the covariance matrix will increase
and the accuracy of the least square solution for RTC response
may suffer. This is particularly true if some subcarriers are
shut down due to power loading. In this case more feedback
data may be needed to maintain a good estimate of the round
trip channel. Alternatively, we also propose to transmit a low
power dummy probing signal on the null subcarriers.

IV. CRAMER RAO LOWER BOUND

In this section we derive the Cramer-Rao lower bound
(CRLB) for channel estimates based on the proposed feedback
system. The results apply to both single carrier and multicar-
rier systems. We first consider the CRLB for the T-spaced
algorithm. The parameter vector for estimation is the stacked
RL and FL channel parameter vectors

θ =
[
g
h

]
, (17)

with

g = (g0(0) · · · g0(lg) · · · gN−1(0) · · · gN−1(lg))T , (18)

and

h = (h0(0) · · · h0(lh) · · · hM−1(0) · · · hM−1(lh))T .
(19)

gj(k) and hi(k) denote the time domain impulse response
of channel polyphase components. In the following we first
analyze the CRLB for real-valued channel variables.

Let the conditional probability of the bent-pipe feedback
data y given θ be f(y|θ). Then the associated Fisher Infor-
mation Matrix (FIM) can be partitioned into 2×2 blocks, with
respect to g and h,

J =
[
J11 J12

J21 J22

]

= E

[
∂ ln f(y|θ)

∂g (∂ ln f(y|θ)
∂g )H ∂ ln f(y|θ)

∂g (∂ ln f(y|θ)
∂h )H

∂ ln f(y|θ)
∂h (∂ ln f(y|θ)

∂g )H ∂ ln f(y|θ)
∂h (∂ ln f(y|θ)

∂h )H

]
.

(20)

Applying the block matrix inversion formula [17], the CRLB
for FL channel estimation is given by

CRBh = (J22 − J21(J11)−1J12)−1. (21)

Similarly, CRLB for RL channel estimation is given by

CRBg = (J11 − J12(J22)−1J21)−1. (22)

A. Conditional Probability Density Function

To simplify the notation, we start with the case when N =
1, i.e. no interpolation nor upsampling. We later extend the
results to the more complicated cases when N �= 1 and when
the forward link channel is oversampled.

Let the forward link polyphase components be coprime. Our
goal is to estimate FL and RL channel responses from

y(z) = G(z)
[
H0(z) · · · HM−1(z)

] ⎡⎢⎣ x0(z)
...

xM−1(z)

⎤
⎥⎦

+ G(z)W10(z) + W2(z). (23)

W10(z) and W2(z) denote the noise polyphase.
We now introduce a notation for polynomial matrix convo-

lution. For a polynomial A(z) of the maximal order l, define
the m × (l + m) Toeplitz filtering matrix as

Tm(A) =

⎛
⎜⎝A(0) · · · A(l)

. . .
. . .

. . .
A(0) · · · A(l)

⎞
⎟⎠ . (24)

Taking signal samples of (23) from time instant t0 with
observation window size n, the signal portion is[

y(t0) · · · y(t0 − n + 1)
]T

= Tn(G)
M−1∑
i=0

Tn+lg (Hi)

⎡
⎢⎣ xi(t0)

...
xi(t0 − n − lf + 1)

⎤
⎥⎦ . (25)

Using the notation in (12) but taking only the first lg + 1
columns of each submatrix Xi(t0 − k), we define

X(t0 − k) =
[
XT

0 (t0 − k) · · · XT
M−1(t0 − k)

]T
, (26)

where X(t0−k) has dimension M(lh+1)×(lg+1). Therefore
(25) can be rewritten in a compact form as

y(t0)
def=
[
y(t0) · · · y(t0 − n + 1)

]T
= (In

⊗
hT )

[
XT (t0) · · · XT (t0 − n + 1)

]T︸ ︷︷ ︸
def
= ZX

g, (27)

where
⊗

denotes vector product, and ZX is a matrix of
dimension nM(lh + 1) × (1 + lg).

Similarly, we can express each received sample y(t0 − k)
as a function of the FL channel vector h, given by

y(t0 − k) =
[
�x0(t0 − k) · · · �xM−1(t0 − k)

]
(IM(lh+1)

⊗
g)h,

(28)

where �xi(t0−k) is a 1×(l+lg)(1+lh) row vector, constructed
using the data from the i-th polyphase component of the FL
data x,

�xi(t0 − k) =
[
xi(t0 − k) · · · xi(t0 − k − lh)

]
(29)

with

xi(t0−k−j) =
[
xi(t0 − k − j) · · · xi(t0 − k − j − lg)

]
.

(30)
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Consequently, (25) can also be written as

y(t0) =

⎡
⎢⎢⎢⎣

�x0(t0) · · · �xM−1(t0)
�x0(t0 − 1) · · · �xM−1(t0 − 1)

... · · ·
...

�x0(t0 − n + 1) · · · �xM−1(t0 − n + 1)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
def
= SX

× (IM(lh+1)

⊗
g)h.

(31)

SX has dimension n × M(1 + lh)(1 + lg). Define

Z = (In

⊗
h)ZX, (32)

S = SX(IM(lh+1)

⊗
g). (33)

We can express the system equation (23) as

y(t0) = Zg + η = Sh + η, (34)

where η denotes the colored noise. The correlation matrix Ω
of η is given by

Ω = σ2
w1

Tm(G)T H
m (G) + σ2

w2
. (35)

Given a set of channels and signals as parameter vector θ,
y(t0) is Gaussian with probability density function

f(y|θ) =
1

(2π)
n
2 |Ω| 12

exp{−1
2
(y − Sh)HΩ−1(y − Sh)}.

(36)

B. Partial Derivatives of the Likelihood Function

Note that both the signal and the noise of (36) are functions
of the reverse link channel response. Taking derivative of the
logarithm of (36) with respect to the vector g, we have

∂ ln f(y|θ)
∂g

= −1
2

∂ ln det(Ω)
∂g

+ ZHΩ−1η − 1
2

∂ηHΩ−1η

∂g
.

(37)
Using established matrix calculus results, we have

ui =
1
2

d

dgi
{ηHΩ−1η} = −σ2

w1
Tr{Ω−1ηηHΩ−1[T H

n (g)]i};
(38)

vi =
1
2

d

dgi
ln det{ηHΩ−1η} = σ2

w1
Tr{Ω−1[T H

n (g)]i}
(39)

where [A]i denotes the n × n sub-matrix of an (n + lg) ×
m A from the i-th row to (i + n − 1)-th row. Stacking the
derivatives into a vector, we have v =

[
v1 · · · vlg+1

]
, and

u =
[
u1 · · · ulg+1

]
. It is easy to see that E{u} = v.

C. CRLB for FL Estimation

Using the results from (38) and (39) as well as the equality
of (34), the CRLB for channel estimation can be calculated.
We re-write (37) as

∂ ln f(y|θ)
∂g

= −v + ZHΩ−1η + u. (40)

Substituting it into the definition of FIM, we have

J11 = ZHΩ−1Z + 3vvH + E{uuH}. (41)

Define a matrix T = E{uuH}. Obviously its (i, j)-th ele-
ment Tij involves the fourth-order statistics of a multivariate
Gaussian vector η that can be evaluated from their second
order statistics. We note, however, that neither v nor T is a
function of the feedback data. As a result, with sufficient SNR,
the impact of these two terms is negligible. We can therefore
approximate the FIM at high SNR using

J11 = ZHΩ−1Z. (42)

Combining (34) and (37), the other FIM blocks are

J12 = ZHΩ−1S = JH
21, (43)

J22 = SHΩ−1S. (44)

Given the expressions of the FIM, the CRLB for both the FL
and the RL channels can be obtained.

As expected, when we let the noise variance be a known
quantity instead of a parameter to estimate, the (2+ lg + lh)×
(2+ lg + lh) Fisher Information Matrix of θ is rank deficient,
and its rank is 1 + lg + lh. In particular, h is a right singular
vector. This implies that the feedback channel estimation has
an intrinsic scalar ambiguity [18] [19]. This is consistent
with our observation that without additional information, any
decoupling algorithm can only separate G(z) and H(z) up to

a scalar. Consequently, Jh
def= J22 − J21(J11)−1J12 is also

rank deficient, and the CRLB for forward link channel in (21)
technically equals infinity. To arrive at a meaningful CRLB,
special care must be taken.

As shown in [18], the pseudo-inverse of Jh can be inter-
preted as the CRLB if the projection of h along the null
space of Jh is known. This is equivalent to knowing explicitly
the scalar ambiguity. Therefore, we use the Moore-Penrose
pseudo-inverse instead of inverse of Jh for calculating CRLB
for the forward link channel:

CRLBh ≥ (J22 − J21(J11)−1J12)†. (45)

Similarly, the CRLB for the reverse link channel estimation is
obtained by taking pseudo-inverse of (22):

CRLBg ≥ (J11 − J12(J22)−1J21)†. (46)

Note that the CRLB in (42), (43) and (44) are for real-
valued channel parameters. For complex parameters, we can
follow the notation used in [18] and obtain similar results. The
derivation details are tedious and are omitted here.

D. CRLB for Alternative Parameterizations

When the forward link channel is oversampled at the mobile
receiver, the feedback signal x(n) used to construct (27), (31),
(32) and (33) is the base station data interpolated by a factor
L. The derivation of CRLB for both FL and RL channels
remains the same. Note, however, that the true unknowns in
the forward link channel estimation are merely the multipath
coefficients. Thus, we may replace h by T T

lcf
(Pf )cf , where

cf is the vector being estimated.
If the mobile station has an N -fold interpolator after the

decimator, the reverse link channel parameter we need to
estimate becomes g =

[
gT

0 gT
1 · · · gT

N−1

]T
. Stacking
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the polyphase components of the round trip channel output,
(27) becomes⎡

⎢⎣ y0(t0)
...

yN−1(t0)

⎤
⎥⎦ =

⎡
⎢⎣(In

⊗
h)ZX

...
(In

⊗
h)ZX

⎤
⎥⎦

︸ ︷︷ ︸
Z

g. (47)

Similarly, the input-output equation using h as the unknown
changes to⎡

⎢⎣ y0(t0)
...

yN−1(t0)

⎤
⎥⎦ =

⎡
⎢⎣ SX(IM(lh+1)

⊗
g0)

...
SX(IM(lh+1)

⊗
gN−1)

⎤
⎥⎦

︸ ︷︷ ︸
S

h. (48)

The new noise correlation is

Q = E{ηηH} = E

⎧⎪⎨
⎪⎩
⎡
⎢⎣ η0

...
ηN−1

⎤
⎥⎦ [η0 · · · ηN−1

]H
⎫⎪⎬
⎪⎭

= diag(
(
Ω0 Ω1 ΩN−1

) (49)

where Ωi is defined in (35). Given these quantities, the exact
expression for the FIM with forward link channel oversam-
pling can be derived. At high SNR, we can use the simplified
approximation (42) by replacing Ω with Q.

E. Impact of Feedback Design Parameters

In practical systems the choice of decimation factor M
and interpolation factor K depends on the desired ratio of
the forward link and reverse link data rate. They are re-
configurable parameters.

Generally speaking, a large decimation factor M reduces
the estimation accuracy of the round trip channel F(z) and
consequently the estimation accuracy for both the forward link
and reverse link channels. Intuitively, a larger M means that
more round trip channel coefficients must be estimated from
the same number of observed data. This can be seen from
the asymptotic CRLB for the round trip channel estimation,
where for i.i.d. noise, the CRLB reduces to

CRLBf
p.→

σ2
η

nσ2
x

I(lf +1)M . (50)

Therefore, the trace of the CRLB for the round trip estimation
scales with M ,

Tr{CRLBf} =
σ2

ηM(lf + 1)
nσ2

x

=
σ2

η(Mlg + lH)
nσ2

x

. (51)

(51) can approximate the impact of M on the performance
when the sample size is large. For other cases, the CRLB for
h and g can be obtained precisely for every specified value
of M , as shown previously.

It is also worth mentioning that large decimation factor M
requires the BS to buffer more forward link data for channel
estimation, as the buffer size Nbuffer is given by

Nbuffer = (n + lh)M (52)

where n is the number of feedback data on the RL.

In practical systems, an important benefit of choosing a
large decimation factor M is that it makes the coprimeness
condition easier to satisfy, thereby improving the robustness of
the feedback channel estimation algorithm. If the FIR channel
is long, near-zero polyphase components in the channel could
make the channel matrix Tn(H) nearly singular. Consequently,
the subspace channel decoupling algorithm may fail. By
distributing the channel information over a larger dimension
through polyphase decomposition, the order of the polyphase
component along each dimension is reduced, and the chance
of having coprime subchannels is greatly increased.

In terms of the interpolation factor K , we note that large
K factor compromises channel estimation accuracy. On one
hand, for K > 1, zeros are inserted in the feedback sequence.
These zeros do not carry FL channel information, and the
relative number of input data available to solve the round trip
channel response is reduced. On the other hand, K reduces
the average feedback data SNR, which is given by

SNRj =
E{‖yj‖2}
E{‖ηj‖2} =

σ2
xs
‖gj‖2‖h‖2

σ2
w1

‖gj‖2 + σ2
w2

(53)

for j = 0, · · · , K−1. ‖·‖ denotes the norm. Let xs be the time
domain OFDM symbol for transmission. If each subchannel
gj has approximately 1/K of the total power of ‖g‖2, then
(53) can be reduced to

SNRj =
σ2

xs

σ2
w(1 + K)

, (54)

when channel responses are normalized to unit power. To get
the exact CRLB for the forward link and reverse link channel
estimation, results from the previous section can be used.

V. NUMERICAL AND SIMULATION RESULTS

We consider a 256-carrier OFDM system using quadrature
amplitude modulation (QAM). The channel bandwidth is
2.5MHz, with cyclic prefix size 1/16 of the DFT size. Let
the OFDM frame duration be 1 ms. The channel is a two-ray
multipath channel [20]

c(t) = α1δ(t) + α2δ(t − τ). (55)

Matching root-raised cosine filters are used at the transmitter
and receiver with pulses truncated to 3 symbol periods. We
should not confuse the fractionally spaced two-ray multipath
channel with channel delay spread, which must include both
transmitter and receiver pulse shaping filters and is much
longer than two symbol periods.

The signal to noise ratio (SNR) is defined as the average
sampled data SNR at the channel output, i.e., for the FL, the
SNR is given by

SNRf =
σ2

xs

σ2
w1

∑
‖h(k)‖2∑
‖pf (k)‖2

, (56)

where h(k) and pf (k) are T-spaced samples of the channel
and the filter. Similarly, the reverse link signal power is defined
according to the normal message data, u, which gives

SNRr =
σ2

u

σ2
w2

∑
‖g(k)‖2∑
‖pr(k)‖2

. (57)
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Fig. 5. Multipath channel frequency response and bit loading result using
[4].

The channel is estimated at the same average SNR as the
data decoding. Note that the SNR is defined on the receiving
data SNR. Therefore the effective SNR on the feedback data
received in the base station is less than the data SNRr and
SNRf . This is because of its inclusion of not only the RL
noise, but also FL noise. As we will demonstrate in the
following simulation results, the proposed channel estimation
method performs well even with the reduced effective SNR.

In simulations, we assume σ2
w1

= σ2
w2

= σ2
w. We also let the

FL data xs and the RL data data u have the same variance, i.e.
σ2

xs
= σ2

u, and let the data SNR on the FL and RL be equal,
SNRf = SNRr. The performance of channel estimation is
measured by the normalized mean square error (NMSE):

NMSE =
1

‖h‖2

(
1

Mt

Mt∑
i=1

‖ĥi − h‖2

)
, (58)

where Mt is the number of Monte Carlo runs, ĥi is the
estimation from the i-th trial, and h is the true channel.
In calculations, NMSE results are averaged over 100 Monte
Carlos trials.

Since feedback data only consumes reverse link bandwidth
and there is no forward link training, we use the number
of feedback data on the RL as a design parameter. The
bit-loading and power allocation method we used in the
simulation was first introduced by Chow and Cioffi in [4]. This
finite granularity loading algorithm approximates the water
pouring distribution iteratively on a subcarrier by subcarrier
basis. Fig. 5 shows a typical channel frequency response used
in the simulation and its bit loading results.

A. Performance of Channel Estimation Algorithm

Fig. 6 compares the CRLB and the simulation results of the
channel estimation NMSE. Uniformly modulated QPSK data
are sent to the mobile station on the forward link. The complex
Gaussian multipath channels are randomly picked such that
the FL multipath channel has α1 = −0.1581 + 0.2841i,
α2 = −0.1303 − 1.2193i with τ = T/2, while the RL
channel has α1 = 0.3022 + 0.5827i, α2 = 0.6987 − 0.4264i
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Fig. 6. Forward link channel estimation Cramer Rao lower bound v.s.
simulated NMSE.
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Fig. 7. Comparison of the training based method and the bent-pipe feedback
method.

with τ = T/3. Decimation by M = 3 is used, and FL
channel output is oversampled by a factor of L = 2. No
interpolation is used and reverse link channel output is baud
rate sampled. The dashed lines show the numerical CRLB
value (45). Clearly, as we increase the number of reverse link
feedback data n, the channel estimation accuracy improves.
The gap between simulation results and the performance lower
bound also reduces with more feedback data.

We also compare the channel estimation with the con-
ventional training based method. Assume BPSK modulated
forward link pilots are used on equally spaced pilot subcarriers
for a 256-OFDM system. Assume the pilot locations and
ISI channel length are known. A maximum-likelihood (ML)
estimator or least square (LS) estimator [1] can be used to
obtain the time domain channel impulse response estimate.
In Fig. 7, we compare channel estimation error of the bent-
pipe algorithm with conventional frequency domain training
through simulation. L is the number of pilot subcarriers, and n
is the number of feedback data on the reverse link channel for
the bent-pipe feedback algorithm. The same channel response
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is used as in Fig. 6. The training method uses a pilot subcarrier
spacing of 8 and 4 respectively, corresponding to 32 and 64
forward link pilot subcarriers.

Fig. 7 clearly demonstrates an advantage of the bent-pipe
feedback algorithm in terms of total transmission bandwidth
saving. With the same transmission power, both methods have
comparable channel estimation performance. Even although
the training algorithm in general has slightly smaller channel
estimation errors, particularly at low SNR, the training process
requires considerably more total bandwidth. In addition to the
forward link pilot symbols, the training based algorithm also
requires reverse link training to estimate the RL channel. If
forward link CSI feedback is required, additional RL band-
width is necessary. As shown in Fig. 7, with similar bandwidth
overhead, the training method only identifies the FL channel
at the mobile station, while the bent-pipe algorithm allows the
base station to identify both FL and RL channels. Also, the
bandwidth overhead for bent-pipe feedback occurs only on the
reverse link, thus preserving the often more precious forward
link bandwidth for information transmission.

B. Quasi-Static Channels

We now consider the bit and symbol error performance
of an OFDM system in quasi-static channels. The feedback
channel estimation is activated without adaptive modulation
or precompensation modules in the system as the channel is
assumed to be unknown. Once the FL channel is estimated,
it is used to design bit and power loading or 1-tap frequency
transmitter pre-scaling, as described earlier. Fig. 8 compares
the forward link bit error rate (BER) of OFDM systems with
and without adaptive modulation. The BER results are tested
over 100 random complex Gaussian channels. The channels
are estimated at the same SNR as receiver decoding. The
knowledge based algorithm is used to lower feedback length
and it uses n = 45 reverse link feedback data.

For comparison, the results of bit-loading and receiver
detection under perfect channel knowledge are also presented.
As expected, the adaptive modulation significantly improves
the error rate performance, particularly at high SNR. This is
due to the fact that when the OFDM subcarriers are uniformly
modulated, the errors are dominated by subchannels in deep
fades. Boosting signal power only has very limited effect.

The bit loaded OFDM performance for target data rate
3 b/sym/Hz is at least 5 dB worse than the low rate system
at 2 b/sym/Hz, and the gap grows as SNR increases. This
is consistent with the observation in [21]. With bit loading,
higher total data rate requires high SNR subcarriers to carry
even more bits, thus becoming more vulnerable to noise and
interference.

It is worth mentioning that correct knowledge of the ISI
channel length is critical to converting our time domain
channel estimate to frequency domain subcarrier gains. When
the ISI channel has small leading or trailing taps, these small
taps are hard to estimate accurately. However, errors in these
parameters may still lead to large errors in the frequency
domain. Without knowing the exact channel order, using
under-estimated channel length often provides a more accurate
channel frequency response than using over-estimated channel
order.
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Fig. 8. Bit error rate comparison of a bit loaded and uniformly modulated
static OFDM system with different target data rates.
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Fig. 9. Symbol error rate comparison of a bit loaded static OFDM system
using different feedback data length.

C. Impact of Imperfect Channel Knowledge

Channel estimation errors affect OFDM systems at two
places: the bit loading module and the decoding module. As
manifested in Fig. 8, for both the bit loaded and the uniform
OFDM modulations, the error rate curves converge to the
results obtained from perfect channel knowledge.

Our simulation results showed that by using 45 RTC feed-
back symbols, the NMSE of channel estimation is reduced to
under 10−3 with a mild SNR of 10-13dB. The performance
loss of the system using our channel estimate is kept under
1 dB of the perfect channel case. This confirms the analytical
results for bit error rate as a function of NMSE for OFDM
systems in [21].

There is a tradeoff between FL channel estimation accuracy
and RL bandwidth consumption. This is reflected in Fig. 9
which compares the symbol error rate of a bit loaded OFDM
system utilizing channel estimates of various degrees of accu-
racy. The performance degradation due to estimation NMSE
is evident at low SNR. However, by increasing the feedback
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Fig. 10. Symbol error rate performance of an OFDM system with a slowly
time-varying channel.

data length moderately, we are able to reduce the error rate to
closely follow the ideal channel case.

D. Time-Varying Channels

We must test the proposed scheme against time-varying
channels. There is a delay from sending MS data back to
the BS. The round trip propagation delay is the minimum
delay before FL channel estimate is immediately used at the
transmitter. Because of the delay in estimating FL channels,
the OFDM pre-processing will be affected by time-varying
channel characteristics such as the Doppler shift.

When the channel is time varying, the channel tracking error
grows with Doppler spread due to MS mobility. We test the
proposed feedback scheme on a 2.4 GHz OFDM system where
the BS and the MS are 1 km apart. We generate time varying
taps in the 2-ray multipath model using the well known model
of

αi(t) =
100∑
n=1

exp{j2πfn(t)t + θn} (59)

where fn(t) is the Doppler frequency, and θn is the random
phase. We update the time varying channel coefficients at the
OFDM packet rate. The symbol error rate performance for a
pedestrian speed (1 m/s) mobile is shown in Fig. 10. In these
results, we fix the RL feedback data size to n = 100. Bit
and power loading are applied. At this moderate frame size (1
ms) and mobile speed, the resulting symbol error rate is mildly
degraded, indicating that the proposed bent-pipe feedback FL
channel estimation approach is suitable for slow to moderately
time-varying channels.

VI. CONCLUSIONS

Generalizing the framework of a bent-pipe feedback ap-
proach to forward link channel estimation, we present a FL
channel estimation scheme for wireless OFDM multicarrier
systems. Estimating the FL channel directly at the transmitter,
this method enables quick and direct implementation of the
subcarrier bit loading and adaptive power allocation in OFDM.

Detailed performance analysis of the proposed channel es-
timation scheme is achieved via Cramer Rao lower bound
evaluation and numerical simulations.

APPENDIX

KNOWLEDGE BASED ESTIMATION ALGORITHM

Once the RTC response is obtained, a subspace algorithm
similar to [12] can be applied to unravel H(z) and G(z) from
F(z) under channel assumptions.

With probability one, Condition 1 holds and the polyphase
components Hi(z) do not share any common roots. The
following relation holds from (9)

Tm(Fji) = Tm(Hi)Tm+lh(Gj). (60)

Tm(A) is the Toeplitz filtering matrix defined in (24). Define

H =
(
T T

m (H0) T T
m (H1) · · · T T

m (HM−1)
)T

, (61)

G =
(
Tm+lh(G0) · · · Tm+lh(GN−1)

)
, (62)

and
Fi(m) =

(
Tm(F0i) · · · Tm(F(N−1)i)

)
. (63)

Stacking the subchannel matrices Fi gives

F =
(
FT

0 (m) · · · FT
M−1(m)

)T
. (64)

Therefore, (6) can be re-written as

F = HG + N, (65)

where N is the noise. For sufficiently large m [12], H has
full column rank, and the left null space of H provides Hi(z)
to within a scaling constant. Performing a singular value
decomposition (SVD) on F, we now have

F = HG + N = (Us Un)
(
Σs 0
0 Σn

)(
VH

s

VH
n

)
(66)

where (·)H denotes the Hermitian operation. The column
vectors of Un span the left null space of F and hence that of
H. Denote pi the i-th column vector of Un. Following the
subspace method in [12], it can be shown that the estimation
of H(z) is obtained by minimizing the quadratic form

q(h) = hHQh (67)

under the constraint that ‖h‖ = 1. The forward link vector h
is defined as

h = (h0(0) · · · h0(lh) · · · hM−1(0) · · · hM−1(lh))T .
(68)

Matrix Q consists of columns pi, 0 ≤ i ≤ mM − lh − m.
Having solved h of (67) or equivalently H , one way to

extract the RL response G is to use

G = H†F, (69)

where (·)† denotes the (Moore-Penrose) pseudo-inverse.
When Hi(z) has a common delay factor, certain columns

of F are zero. Remove the zero columns from F gives H(z)
to within a scaling and delay factor. A similar algorithm can
be derived when condition 2 holds.
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