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Abstract—We investigate the problem of source localization based on measuring time difference of signal arrivals (TDOA) from the

source emitter. Taking into account the colored measurement noise, we adopt a min-max principle to develop two lower complexity

semidefinite relaxation algorithms that can be reliably solved using semidefinite programming. The reduction of algorithm complexity is

achieved through a simple, but effective method to select a reference node among participating measurement nodes such that only

selective time differences of signal arrival are exploited. Our estimation methods are insensitive to the source locations and can be

used either as the final location estimate or as the initial point for more traditional search algorithms.

Index Terms—Source localization, time difference of arrival, semidefinite programming.

Ç

1 INTRODUCTION

WIRELESS source localization has been a problem that
maintains a considerable level of research interest

because of its broad applications in areas such as target
tracking, signal routing, interference mitigation, and emer-
gency response, among others [2]. Source localization
typically involves estimating the positions of signal emitters
in a network of sensors that measure distinct source signal
characteristics. Utilizing the collective signal measurements
from the sensors, a data fusion center can generate the
source location estimate. In practice, the various data fusing
methods include time of arrival (TOA), time difference of
arrival (TDOA), received signal strength (RSS), angle of
arrival (AOA), and various combinations of these [3].
Similarly, an equivalent problem of sensor navigation
involves a sensor trying to estimate its own location based
on signals received from multiple (coordinated) emitters.

The problem of source localization has been investigated

in a number of published works, e.g., [2], [3], based on

various signal measurement models. The authors of [4]

presented a semidefinite programming (SDP) algorithm for

a noisy distance measurement (DM) model by minimizing

the l1 norm of estimation error. This proposed framework

can also integrate additional angle-of-arrival information.

By applying a RSS measurement under the well-known log-

normal fading model, the authors of [5] also derived

efficient SDP approaches to source localization based on a

min-max criteria. However, in most applications, distance,
and signal strength measurements are not directly avail-
able. Additionally, in environment rich with scatters, radio
signal strength measurement can be highly variant and
noisy. Therefore, developing algorithms less dependent on
source location for alternative measurement models be-
comes necessary. In this work, we are particularly inter-
ested in the TDOA measurement model, for which only
differences of the signal arrive instants between different
sensor nodes are considered. There is no need to synchro-
nizing the clock between the source and the receiving
sensors in the TDOA model.

Typically, preprocessing TDOA measurements will lead
to a set of linear equations with some information loss [3]. In
[6], the authors proposed a two-step generalized least square
(LS) method as an approximate maximum likelihood (ML)
solution. On the other hand, the authors of [7] considered LS
approaches based on range difference and squared range
difference measurements, through which the global optimal
solution is found by adding a correction term to the LS
inverse matrix. However, this correction term requires a
search process involving matrix inverses which may be ill-
conditioned. More recently, the authors of [8] provided a
rather elegant solution by assuming noise independence
among the TDOA measurement, leading to an approximate
ML formulation for TDOA based localization. The work of
[8] is based on an effective relaxation method to transform
the original nonconvex optimization problem into a convex
problem. All pairwise TDOA measurements from sensor
nodes are included in a cost function for minimization. This
means that, with N sensors, the number of pairwise TDOA
pairs under consideration is NðN � 1Þ, potentially leading
to high computational complexity. Similar to [8], the authors
in [9] considered only one reference node and proposed a
constraint based on prior location knowledge.

In this work, we develop two new algorithms that are
derived from a reduced complexity semidefinite relaxation
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for the TDOA model. In particular, we first identify a
reference node to selectively generate the essential TDOA
measurement information. We formulate a simpler ap-
proximation of the source localization problem based on
the measured TDOA information between the reference
node and other nonreference nodes. We develop a min-
max criterion that is less sensitive to the intrinsic
measurement noise correlation and can be solved via
semidefinite relaxations. Thus, our algorithm does not
require the assumption on correlation of TDOA measure-
ment noise and is less sensitive to the distribution of the
sensors versus the source. We also propose a simple and
effective way for the selection of the reference node.

2 PROBLEM STATEMENT

2.1 Time of Arrival Measurement Model

Consider a network that consists of N sensors at known
positions denoted by a set of m-dimensional vectors
x1; . . . ;xN (with m ¼ 2 or 3). These sensors cooperate to
determine an unknown source location denoted by an
m-dimensional vector y. Note that we restrict our focus
only on propagation environments without remote scat-
ters. In other words, the time of arrival measurement can
be approximately modeled by a line of sight environment.
Based on collected sensor measurements fv1; v2; . . . ; vNg,
a data fusion center generates a source location estimate

ŷ0 ¼ � v1; . . . ; vN ; x1; . . . ;xNð Þ; ð1Þ

where �ð:Þ is the functional form of the estimate.
With sensors synchronized to a common clock, the

common source signal arrives at different sensors with TOA
values ti of a specific node xi

ti ¼
1

c
kxi � yk þ t0 þ ni; i ¼ 1; 2; . . . ; N: ð2Þ

Here, c is the speed of light and t0 is the unknown reference
time at which the source signal was transmitted. In
addition, ni are independent identically distributed (i.i.d.)
Gaussian with zero mean and variance �2. Under the i.i.d.
Gaussian noise assumption, the conditional probability
density of the measurement data is

p t1; t2; . . . ; tN jy; t0ð Þ

¼ ð2��2Þ�N=2 exp � 1

2�2

XN
i¼1

ti �
1

c
kxi � yk � t0

� �2
 !

:
ð3Þ

Consequently, the maximum likelihood estimate (MLE)
of y can be obtained for the unprocessed time-of-arrival
(TOA) measurement as

ŷ ¼ arg min
y;t0

XN
i¼1

ti �
1

c
kxi � yk � t0

� �2

: ð4Þ

2.2 Estimation from Time Differences of Arrival

Jointly, estimating y and t0 accurately can be challenging.
However, by designating one of the sensors as a reference
node xr; 1 � r � N , we can remove one unknown t0 and
obtain a much simpler model for estimation based on
TDOA measurement between the ith node and the
reference node

�i;r ¼
1

c
ðkxi � yk � kxr � ykÞ þ ni � nr;

i ¼ 1; 2; . . . ; r� 1; rþ 1; . . . ; N:
ð5Þ

It should be noted that the noise term in (5) is ni � nr.
Therefore, the noise terms in �i;r and �j;r are dependent.
For a specific reference node xr, let

�r ¼ ½�1;r . . . �r�1;r �rþ1;r . . . �N;r�T ;

�i;r ¼
1

c
ðkxi � yk � kxr � ykÞ;

�r ¼ ½�1;r � � � �r�1;r �rþ1;r . . . �N;r�T :

Then, the joint conditional probability density of �r is

p �rjyð Þ ¼ ð2��2Þ�
N�1

2 jQj�
1
2�

exp � 1

2�2
ð�r � �rÞTQ�1ð�r � �rÞ

� �
;

ð6Þ

where

Q ¼

2 1 � � � 1
1 2 � � � 1
..
. ..

. . .
. ..

.

1 1 � � � 2

2
664

3
775:

Then, the approximate MLE of y becomes

ŷ1 ¼ arg min
y
½ð�r � �rÞTQ�1ð�r � �rÞ�: ð7Þ

We also note that if we include all pairwise TDOA
measurements into consideration like in [8], then the noise
correlation leads to a noninvertible covariance matrix
whenever N > 3 due to measurement reuse. Still, some
TDOA source localization approaches, such as [8], neglect
this noise correlation. Thus, the resulting localization
algorithms based on independent TDOA noise assumption
tend to suffer performance degradations when applied in
practical TDOA measurement. Therefore the noise correla-
tion must be considered in determining MLE and Cramer-
Rao Lower Bound (CRLB).

For a specific reference node, the Fisher information
matrix is given by [6] as

F ¼ 1

c2�2

XN
i¼1

ðxi � yÞðxi � yÞT

kxi � yk2

� 1

Nc2�2

XN
i¼1

XN
j¼1

ðxi � yÞðxj � yÞT

kxi � ykkxj � yk ;
ð8Þ

which is independent of the choice of the reference point xr.
Hence, for any unbiased estimate ŷ, the CRLB is

MSE ¼ Eðkŷ� yk2Þ � Trace½F�1�: ð9Þ

Note, however, that ti is not linear with y in (2). Hence,
according to the analysis of [10], there exists no efficient
unbiased estimators for y in the TDOA measurement model.
Therefore, even though the CRLB is invariant to the choice
of reference node xr, it only implies that the performance of
an efficient unbiased estimate, if it exists, is not affected by
the reference point selection. Because there exists no
efficient unbiased estimator, a given localization algorithm
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based on TDOA model either is biased, or fails to reach the

CRLB. Thus, the performance of actual TDOA localization

algorithms will be affected by the reference node selection.

3 A NEW SDP RELAXATION BASED ON TDOA

3.1 Localization Criterion with Low Sensitivity to
Noise Correlation

The direct solution of the MLE ŷ in (7) is a nonconvex

optimization problem. In [8], a novel relaxed convex

formulation was proposed, in which all the pairwise TDOA

measurements are involved. However, its reliance on

independence TDOA noise assumption makes it more

sensitive to the true TDOA model in which the noises are

correlated. In addition, the complexity can be quite high by

including all pairwise TDOA measurements.
To develop a simpler TDOA algorithm, we can designate

a single sensor node as the reference node xr and consider

only the TDOA between this node and the remaining

nodes. We can modify the problem formulation by

rewriting (5) into

�i;r þ
1

c
kxr � yk ¼ 1

c
kxi � yk þ ni � nr; ð10Þ

which leads to

�i;r þ
1

c
kxr � yk

� �2

� 1

c2
kxi � yk2

¼ 2

c
kxi � yk þ ni � nr

� �
ðni � nrÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

noise wi

:
ð11Þ

For i ¼ 1; . . . ; r� 1; rþ 1; . . . ; N . In the noise-free case, the

right-hand side of (11) is of course zero. Thus, one approach

to estimating y would be to minimize the maximum

matching error between the squares of the propagation time

between the ith sensor and the reference node. In [7], a

modified LS method was used to find the global minimum

solution to the sum of the matching errors in (11). The

modified LS method needs to find the correction term to the

LS inverse matrix, which is a search process involving matrix

inverse and can be numerically ill-conditioned.
To find a globally convergent solution which is less

sensitive to the noise correlation, we adopt the min-max

criterion to obtain a simplified formulation

~y ¼ arg min
y

max
i6¼r

i¼1;...;N

1

c2
kxi � yk2� 1

c
kxr � yk þ�i;r

� �2
�����

�����: ð12Þ

Although the min-max estimate remains nonconvex, it is

quite amenable to semidefinite relaxations, as shown below.

The resulting convex optimization algorithm turns out to be

quite direct.

3.2 Outer-Product SDP Formulation of TDOA

We introduce one extra degree of freedom into the TDOA

problem by setting dr ¼ kxr � yk as a variable in the

variable vector �y ¼ ½yT dr 1�T . We can then define the

outer-product matrix

Y ¼ �y�yT ¼
yyT dry y
dry

T d2
r dr

yT dr 1

2
4

3
5

and

�ir ¼
I 0 �xi

0T �1 �dir
�xTi �dir xTi xi

2
4

3
5;

where dir ¼ c�i;r for i ¼ 1; . . . ; r� 1; rþ 1; . . . ; N . Using Y

and �ir, (12) can be written in an equivalent form

min
�y;dr

�

s:t: � � < 1

c2
Traceð�iYÞ ��2

i;r < �;

i ¼ 1; 2; . . .; r� 1; rþ 1; . . . ; N;

which is a convex function in terms of variable Y and �i.
By applying semidefinite relaxation [11], we can for-

mulate the problem into a convex one

min
Y;dr

�

s:t: � � < 1

c2
Traceð�irYÞ ��2

i;r < �;

i ¼ 1; 2; . . . ; r� 1; rþ 1; . . . ; N;

Y � 0;

Yðmþ1;mþ 1Þ > 0;

Yðmþ1;mþ 2Þ > 0;

Yðmþ2;mþ 2Þ ¼ 1:

ð13Þ

Note that Y � 0 denotes the (symmetric) positive semide-

finite constraint.
The global optimal solution of this convex optimization

can be found using modern SDP solvers such as SeDuMi

[12] that applies the interior point method. Note that the

solution of (13) gives Y, which already contains the source

location y. We can directly get the source location from Y.

However, there is more information about y in the matrix

Y. To obtain a better estimation, we need to perform some

postprocessing to convert the SDP relaxation solution Y

into the original optimization problem in terms of ~y. Some

standard postprocessing techniques can be applied to

extract ~y from Y, as discussed in [13].

3.3 Inner-Product SDP Formulation of TDOA

As an alternative algorithm to the outer-product SDP

formulation, we consider a different relaxation approach.

We introduce a new variable for the inner-product ys ¼ yTy,

plus two additional variables dr ¼ kxr � yk; ds ¼ d2
r . Ac-

cordingly, the optimization problem (12) can be rewritten as

min
y; ys; dr; ds

�

s:t: � � < 1

c2
Trace

I y

yT ys

� �
xix

T
i �xi

�xTi 1

" # !

� 1

c2
Trace

1 dr

dr ds

� �
d2
ir dir

dir 1

� �� �
< �;

i ¼ 1; 2; . . . ; r� 1; rþ 1; . . . ; N;

ð14Þ

where dir ¼ c�i;r.
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However, the two equalities ys ¼ yTy and ds ¼ d2
r are not

affine. In order to make the whole formulation convex, we

relax the two equalities ys ¼ yTy and ds ¼ d2
r to inequalities

ys � yTy and ds � d2
r , respectively. These inequalities can be

expressed in linear matrix inequalities, i.e.,

I y
yT ys

� �
� 0;

1 dr
dr ds

� �
� 0: ð15Þ

Additionally, ds ¼ d2
r can be expressed in terms of xr, y, and

ys, where ds ¼ xTr xr � 2xTr yþ ys. Then, we can formulate

the problem into

min
y;ys;dr;ds

�

s:t: � � < Trace
I y

yT ys

� �
xix

T
i �xi

�xTi 1

" # !

� Trace
1 dr

dr ds

� �
d2
ir dir

dir 1

� �� �
< �;

i ¼ 1; 2; . . . ; r� 1; rþ 1; . . . ; N;

I y

yT ys

� �
� 0;

1 dr

dr ds

� �
� 0;

ds ¼ xTr xr � 2xTr yþ ys:

ð16Þ

This optimization problem in (16) can now also be solved

using standard (e.g., interior point) convex optimization

methods such as SeDuMi [12].
We note that, unlike the outer-product relaxation, the

inner-product relaxation can directly yield ~y without loss of

information. Additional postprocessing is unnecessary for

the inner-product relaxation. On the other hand, significant

amount of location information would be lost from the

result of the outer-product relaxation without postproces-

sing. Moreover, using techniques in [14], (16) can be shown

to be equivalent to (13) without the constraint dr > 0 and

ds ¼ xTr xr � 2xTr yþ ys. Since this constraint is consistent

with the optimum solution, we expect this additional

constraint to provide some performance improvement for

the inner product algorithm.

3.4 Reference Node Selection

Although the CRLB of the TDOA model is invariant to the

selection of reference node, no unbiased efficient estimators

exist. Hence, the performance of practical localization

algorithms varies with different reference nodes as we will

show in Section 4. Therefore, we need to find a good

reference node selection method.
We propose a very simple criterion for reference node

selection here. Based on the principle that a more compact

range of time difference of arrival �i;r leads to better

numerical conditioning, we select the reference node xr
based on the median criterion:

tr ¼ medianfti; i ¼ 1; . . . ; Ng: ð17Þ

As will be shown by our simulation verifications, this

simple reference selection criterion can generate good

estimation.

3.5 Complexity Analysis of the Proposed Algorithm

We apply the result of [11] to evaluate the complexity of

various convex algorithms. We denote our outer-product

and inner-product based algorithms as SDP-O and SDP-I,

respectively, while labeling the algorithms in [3], [6], [7], [8]

as Classic, TSLS, SRDLS, and YWL-ECR, respectively. In

Table 1, we compare algorithm complexities in terms of the

number of iterations and operations in each iteration. By

comparison, we can see that the complexity of the YWL-

ECR algorithm is considerably higher than other algo-

rithms, particularly in terms of the operations in each

iteration when the number of sensors N is large. On the

other hand, all other methods have similar complexity

because we have m ¼ 2 or 3.

3.6 Further Estimation Refinement

In general, the SDP-I and SDP-O algorithms yield approx-

imate solutions that are close to the optimum estimate. To

further refine the estimate, it is customary to use the SDP

estimate as the initial starting point of some traditional

nonlinear search algorithms. For example, we can apply ~y

as the starting point and (4) as the object function. We can

then use the Powell minimum search algorithm [15]

initialized with various SDP estimates to refine the

estimation results. Note however, that additional search

after applying various localization algorithm tends to

obscure their performance differences. Thus, in the simula-

tion results below, we will only compare the results of

various localization algorithms without additional search.

4 SIMULATION RESULTS

In our simulations, we test the proposed SDP-O and SDP-I
algorithms along with other algorithms. Recall that the
“classic (linear) algorithm” [3] obtains the location estima-
tion through solving a set of linear equations. By adding a
correction to the solution of the classic linear algorithm,
the TSLS algorithm [6] improves the estimation. The
SRDLS algorithm [7] also adds a correction term to the
LS inverse matrix. The YWL-ECR algorithm [8] includes

all the pairwise TDOA measurements and formulates the
estimation problem into a convex problem via SDP
relaxation. Our numerical simulation results are compared
against the above algorithms. To be more fair, we also test
the YWL-ECR algorithm by limiting to only one reference
node and correlated TDOA noise, denoted as “YWL-ECR-
SR.” Moreover, we compare the results against the CRLB
defined in (9).
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During the test, we place eight sensors in 2D at

x1 ¼ ½40; 40�T ;x2 ¼ ½40;�40�T ;x3 ¼ ½�40; 40�T ;
x4 ¼ ½�40;�40�T ;x5 ¼ ½40; 0�T ;x6 ¼ ½0; 40�T ;
x7 ¼ ½�40; 0�T ;x8 ¼ ½0;�40�T :

In order to quickly determine a reference node, the median
TOA measurement reference node selection criterion of (17)
is applied. We compare the root mean squared error
(RMSE) of the source position as standard deviation of the
noise varies. The results are averaged over 3,000 Monte
Carlo tests. For simplicity, we convert the noise in (2) to
the distance domain. All the simulations are carried out on
a PC with Intel Core 2 Duo P8400 CPU and 3 GB RAM
running Matlab R7.6.0 (R2008a).

Example 1. In this example, we compare the performance of
Classic and SDP-I by using different reference nodes. The
source is placed at y ¼ ½200; 210�T , which is outside the
convex hull formed by the sensor nodes. We use x1, x3, x6,
and the node with median TOA measurement as the reference
node, respectively. The performance comparison of Classic
and SDP-I algorithms under different reference nodes is
shown in Fig. 1 In particular, reference node selection based
on the median criterion is tested in this example. We can see
that the Classic method is more sensitive to the selection of
reference node. When x1 is chosen as the reference node, it
fails to locate the source even at very low noise. The difference
between the SDP-I method under different reference nodes
is very small. The results also illustrate that by selecting the
reference node based on the simple median criterion, our
localization algorithm SDP-I works well. Therefore, we will
use this criterion in the next two examples.

Example 2. We place the source node at y ¼ ½20; 30�T ,
which is inside the convex hull of the sensor nodes. The
estimation results of the Classic, SDP-O, SDP-I, TSLS, SRDLS,
YWL-ECR-SR, and YWL-ECR are compared in Fig. 2. We set
the parameter � ¼ 0:000001 for YWL-ECR-SR and YWL-ECR.
From the RMSE result, we can see that our proposed SDP-O
and SDP-I are better than the Classic, SRDLS, and YWL-ECR-
SR methods. YWL-ECR gives the best estimation in this case
at the expense of the highest complexity by exploiting all

pairwise TDOA information. We also illustrate the bias for
the localization results. It is clear that none of the algorithms
provides an unbiased estimate.

We give a comparison of the average CPU computational
time perestimation trial in Table 2. We can see that the classic
TDOA algorithm requires the least CPU time among all the
algorithms while the YWL-ECR requires the most CPU time
due to its highest complexity. The CPU time needs of our two
proposed algorithms are moderate and fall in between the
classic and the YWL-ECR algorithms, as expected.

Example 3. We place the source node at y ¼ ½10; 200�T ,
which is outside the convex hull formed by the sensor
nodes. The estimation results of Classic, SDP-O, SDP-I,
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Fig. 1. Comparison of Classic and SDP-I algorithms using different
reference nodes. RFI represents reference node index.

Fig. 2. Comparison of SDP-O, SDP-I, Classic, TSLS, SRDLS, YWL-
ECR-SR, and YWL-ECR algorithms when a source node is inside the
convex hull.

TABLE 2
Average CPU Computational Time

per Estimation for Different Algorithms



TSLS, SRDLS, YWL-ECR-SR, and YWL-ECR are shown in
Fig. 3. We set � ¼ 0:000001 for YWL-ECR-SR and YWL-ECR.
It is interesting to observe that, unlike in the previous
results, the SRDLS, YWL-ECR-SR, and YWL-ECR do not
generate a good location estimate in this configuration. In
fact, the RMSE fails to improve even as the noise variance is
substantially reduced. For example, for the SRDLS algo-
rithm, in a large percentage of Monte Carlo tests, an ill-
conditioned matrix is inverted, leading to the poor numer-
ical result. In fact, as shown in Fig. 3, the large estimate bias
of the three algorithms contributed to the poor RMSE
performance. This example illustrates the possible sensitiv-
ity of these existing methods previously unreported in the
literature. By contrast, the proposed SDP-O and SDP-I
algorithms both perform well in this case and are much
better than the Classic and the TSLS. This result demon-
strates the low sensitivity of the proposed algorithms to
different sensor network configurations.

5 CONCLUSION

In this work, we propose an alternative convex optimization
formulation for source localization in wireless sensor
networks based on TDOA measurements. By designating
a single reference node and using a min-max criterion that
is less sensitive to measurement noise correlation, we

present two SDP relaxation approaches that can efficiently
solve the min-max problem. We also provide a simple and
effective reference node selection method by choosing the
node with the median TOA measurement. Complexity
analysis and simulation results demonstrate that the
proposed algorithms are effective and works well with
low sensitivity to source-sensor configurations. Our pro-
posed methods provide a good tradeoff between computa-
tional complexity and estimation performance.
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