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Abstract—Recent advances in wireless sensor networks have led
to renewed interests in the problem of source localization. Source
localization has broad range of applications such as emergency
rescue, asset inventory, and resource management. Among various
measurement models, one important and practical source signal
measurement is the received signal time of arrival (TOA) at a
group of collaborative wireless sensors. Without time-stamp at
the transmitter, in traditional approaches, these received TOA
measurements are subtracted pairwise to form time-difference
of arrival (TDOA) data for source localization, thereby leading
to a 3-dB loss in signal-to-noise ratio (SNR). We take a different
approach by directly applying the original measurement model
without the subtraction preprocessing. We present two new
methods that utilize semidefinite programming (SDP) relaxation
for direct source localization. We further address the issue of
robust estimation given measurement errors and inaccuracy in
the locations of receiving sensors. Our results demonstrate some
potential advantages of source localization based on the direct
TOA data over time-difference preprocessing.

Index Terms— Semidefinite programming relaxation, source lo-
calization, time of arrival.

I. INTRODUCTION

R ECENT years have witnessed tremendous growth in
both interests and applications of wireless sensor net-

works. Among a plethora of research thrusts, one problem that
has gathered substantial attention is the localization of signal
emitters from signal measurements obtained at a network
of collaborative and distributed signal sensors [1], [2]. We
recognize that wireless source localization has broad appli-
cations, including target tracking, signal routing, interference
alignment, wireless security, and emergency response. The
basic setup of distributed wireless source localization involves
estimating positions of signal emitters by jointly utilizing signal
measurement from a subset of distributed network sensors.
These sensors collaborate by sending their measurement data
to a signal processing center which subsequently estimates the
source location(s) according to the received measurement data.
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As a well-studied problem in sensor networks, there exist
various established methods for source localization that
are based on measurement models of received signal time
of arrival (TOA), distance measurement, received signal
strength (RSS), signal angle of arrival (AOA), and their com-
binations. The sensors should know and utilize some features
of the signal from the unknown emitter in order to obtain
these measurements at the receiver [2]. In many radio signal
applications, distance information is not directly available
and must be estimated based on signal measurement such
as strength and time of arrival. On the other hand, received
signal strength measurements can also be very sensitive to the
channel environment. For example, in an environment with
rich scatters, signal strength measurement can be difficult to
model and relate to the source location information. For these
reasons, other measurement models may be more practical. In
this work, we are particularly interested in the simple model
based on received signals’ time of arrival measurement. In the
TOA model, each sensor only needs to identify a special signal
feature such as a known preamble to record its arrival time.
Based on the model that relates the TOA to the source-sensor
location information, we can directly estimate the source loca-
tion from multiple TOA measurements.

In most radio environments with direct line-of-sight path or
with scatters close to the source or sensor, the TOA measure-
ment is directly correlated to the distance between the source
and the sensor as the radio propagation velocity is well known.
One practical obstacle is the typical lack of synchronization be-
tween the source and the receiver. In other words, the receivers
often are not aware of the precise starting time instant of source
transmission . The uncertainty with respect to the starting time
of transmission instant causes a common time offset among
all the received TOA measurements, which can potentially lead
to significant localization error. For this reason, several existing
works assume source-sensor synchronization [3], [4] so that
is known. However, this knowledge requires the cooperation be-
tween the source and the sensors, an assumption that severely
limits the practical application of such algorithms. A very pop-
ular alternative in the literature to deal with the unknown is
to preprocess the TOA measurement by utilizing only the dif-
ference of TOA measurements from various sensors. The pre-
processing of subtracting pairwise TOA measurement removes
the unknown from the measurement information and simpli-
fies the source localization problem into the time-difference of
arrival (TDOA) model.

The TDOA model considers the difference of the arrive time
between the clock-synchronized sensor nodes. However, the
subtraction of pairwise TOA measurements leads to correlated
noise in TDOA [2], and more importantly, strengthens the
measurement noise by 3 dB. Despite the drawbacks, the sim-
pler TDOA model has spurred a number of effective methods
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designed for TDOA measurements in source localization. Var-
ious solutions range from linear [2], nonlinear [5], and convex
optimization [6], [7] approaches. In fact, some TDOA works
view TDOA as the original (noisy) measurement and neglect
the subtraction step. As a result, the actual effect of the TDOA
preprocessing on the localization tends to be blurred.

Recently, convex optimization techniques have been applied
in source localization. These optimization techniques can be
grouped into two categories: seconder order cone program-
ming (SOCP) and semidefinite programming (SDP). Both
categories apply various types of relaxation methods to the
original problem to arrive at convex SOCP and SDP problems.
In [8], the distance constraints are relaxed and the problem
is formulated as SOCP. The SDP approach has appeared in
different measurement models including distance model [9],
TOA model [10], and TDOA model [6], [7]. Note, however,
that the TOA model of [10] requires sensors to have the knowl-
edge of the source signal starting transmission time instant .
This synchronization requirement renders the TOA model of
[10] less general and cannot be applied to problems without
source-sensor cooperation and synchronization. For the prac-
tical TOA model without source-sensor synchronization, the
unknown starting time of source signal transmission further
complicates the localization problem. To the best of our knowl-
edge, there exists no work in the literature that solve the more
general TOA problem directly via convex optimization.

In this work, we apply the original TOA measurement model
for source localization. Unlike existing methods that either
assume to be known or use TOA subtraction, our approach
makes no such assumption or preprocessing. Our goal is to
present practical algorithms while avoiding the unnecessary
noise enhancement and noise coloring associated with the
TDOA model. Our contributions are as follows. In our first
work, we propose a two-step approach for TOA that begins by
estimating the time of transmission . The two-step approach
yields a SDP algorithm that can approximate a maximum like-
lihood estimate of the source location. We also present a second
SDP approach for source localization based on minimizing the
maximum error measurement between the observed propaga-
tion time and the modeled propagation time. Both methods
are shown to be effective without TDOA preprocessing in
estimating source locations. Furthermore, we investigate the
robustness issues that arise because of inaccuracies in the sensor
locations. We develop a robust TOA localization algorithm
to tackle the robustness problem due to such sensor location
errors.

II. PROBLEM STATEMENT

A. A More General and Practical Time of Arrival Model

We first describe the practical TOA model for source local-
ization. Consider a network of distributed sensors at the po-
sitions denoted by a set of -dimensional vectors
(with 2 or 3 for 2-dimensional or 3-dimensional localiza-
tion, respectively). These sensors cooperate by helping a data
fusion center (DFC) determine an unknown source location de-
noted by an -dimensional vector . Note that we focus only
on a propagation environment in which a line-of-sight (LOS)
path exists or in which nearby scatters around the source and the
sensor can provide a near-LOS path. In other words, all the time

of arrival measurements can be approximately obtained from the
LOS path. By collecting measurements from the sensors, a data
fusion center attempts to estimate of the source location.

During the localization process, each sensor detects the time
of arrival measurement of the source signal at its receiver based
on particular signal features (e.g., preamble) transmitted by the
source node. Given an LOS propagation path, the time of arrival
measurement at sensor node can be easily modeled as

(1)

where is the speed of light, denotes the Euclidean norm,
is the unknown time instant at which the source transmits

the signal to be measured, and is the additive measurement
noise (error) with zero mean. We note that the sensors only es-
timate the signal TOA instead of the signal propagation time

. In order to estimate the propagation time, the source
must cooperate by synchronizing its signal “time of transmis-
sion” with the sensors, or it must encode a time stamp within
the transmitted signal to inform the sensors what is. Without
such time synchronization or time stamp, the TOA measure-
ment consists of an additional unknown . In some existing
approaches, the resulting TOA measurement are preprocessed
through pairwise subtraction to generate the measurement for
time difference of arrival based localization [6], independent of

.
Without any other prior assumptions on the statistics of the

TOA measurements, a least square (LS) estimator can be used
for the source localization problem, i.e.,

(2)

Using brute force, we can implement direct optimization by
searching for the optimum and that minimize (2). This cri-
terion is maximum likelihood (ML) for uncorrelated Gaussian
measurement noises . Because this TOA model needs to
estimate both and jointly, the ML optimization problem can
be rather challenging as a multidimensional search problem.
In particular, the brute force LS criterion of (2) is a nonconvex
problem potentially admitting multiple local minima. Existing
algorithms achieved only limited successes, even for small
problem sizes [11].

B. TOA Model Versus TDOA Model

Recognizing that the unknown is not of direct interest in
source localization, one common alternative to solving the joint
estimation problem is to use the pairwise difference of the arrival
times among the sensor nodes. In order to obtain the time-differ-
ence of arrival, a simple preprocessing of the TOA measurement
is implemented by

(3)

where is the TDOA measurement.
After the preprocessing, the unknown parameter is re-

moved. However, there are two problems for this processing.
Firstly, we note that the noise terms in (3) are no longer
independent. For example, the noises and are correlated
since they have in common. In addition, in comparison with
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the independent noise in the original TOA model (1), the sub-
traction also strengthens the noise in TDOA by exactly 3 dB and
leads to noise correlation. For this reason, the preprocessing for
obtaining TDOA may lead to performance degradation which
should be avoided.

C. Cramér–Rao Lower Bound for TOA-Based Estimate

Given the TOA measurement model, the performance of any
unbiased estimate of would be limited by the Cramér–Rao
lower bound (CRLB). The analysis of the CRLB with the
unknown is equivalent to the case of known transmission
time with time synchronization errors in [12]. To determine
the CRLB under the general TOA measurement model, we
assume that the measurement noises in (1) are independent and
identically distributed (i.i.d.) Gaussian random variables with
zero mean and variance . Under the i.i.d. Gaussian noise
assumption, the joint conditional probability density function
of the measurement data follows:

(4)

Let , denote the element of vectors , , respec-
tively. Define as the vector of all un-
knowns. The corresponding log-likelihood function (ignoring
the constant term) is given by

(5)

Then similar to [12], we can calculate each element of the
Fisher information matrix . For , we have the

th element of as

(6)
Additionally, for , we have

(7)

and

(8)

As a result, the CRLB of any unbiased estimate is

(9)

However, because is not linearly related with in (1), we
can cite the result in [13] to conclude that there exists no efficient
unbiased estimate for . Indeed, the MLE is not efficient and no
unbiased estimate can achieve the CRLB under the TOA model.
Similarly, there exists no efficient unbiased estimator from the

TDOA measurement [14]. Therefore, the CRLB can only serve
as a benchmark when evaluating the performance of various es-
timates. The fact that a large gap may exist between the CRLB
and the performance of a given algorithm does not invalidate the
algorithm in question.

III. TOA-BASED NEW LOCALIZATION ALGORITHMS

As noted earlier, the least square solution of (2) is a non-
linear nonconvex problem. With the potential for multiple local
minima, depending on the locations of the source and the sen-
sors, solving for its global minimum can be a serious chal-
lenge. Additionally, the lack of efficient unbiased estimate for
the source localization based on TOA measurement means that
the maximum-likelihood estimate (MLE) is not automatically
favored. In fact some biased estimates may potentially be more
accurate than unbiased ones. These facts motivate us to seek
alternative, non-maximum-likelihood algorithms in TOA-based
source localization.

In this section, we will develop two new TOA algorithms.
One is a two step LS method, the other is based on a min-max
criterion. Both algorithms utilize semidefinite relaxation to
transform nonconvex problems into convex ones in order to
make it easier to locate the global optimum of the original
underlying problem. We now give the specifics below.

A. A New 2-Step Least Square (2LS) Formulation

Our first algorithm relies on a two-step approach. First, note
that the LS estimate of requires a joint optimization of both
unknowns and . Instead of finding the and jointly, we
can solve for the optimum estimates by reducing the joint min-
imization into two steps.

First, we find the optimum transmission time as a depen-
dent function of the unknown . In particular, for zero mean
noise in the signal model of (1), the least square estimate of
the transmission time is simply

(10)

We can now substitute with in the objective function (2) in
order to find the optimum source location that minimizes the
overall LS objective function

(11)

The resulting objective function is nonconvex and should be
solved with well-behaved algorithms.

Next, we can applied similar relaxation techniques in [6]. To
derive a convex optimization relaxation, we introduce auxiliary
variables

Let us denote , , ,
, where . With these no-

tations, we can rewrite the objective function of (11) for mini-
mization as

(12)

where Tr(.) represents the trace of a matrix.
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Notice that the problem described in (12) under the con-
straints and is identical to the
original optimization problem and is nonconvex. Clearly, this
objective function form is a linear function of both and and
is convex. However, because of the constraints
and are nonconvex, the solution remains difficult.
Our next task is to relax the nonconvex constraints into convex
constraints that remain tightly connected with the original
constraints.

To begin, considering the auxiliary variables , we need to
enforce the constraint . It is helpful to realize
that

in which . Therefore, utilizing the matrix notation ,
this constraint can be written as

(13)

This constraint is now convex in terms of variables , ,
and . Given the variable matrix , we can also apply
Cauchy–Schwartz inequality to yield

This constraint inequality can be written as

(14)

which is also convex in terms of , , and .
We now still have two nonlinear and nonconvex constraints

in the form of equalities and . We apply
semidefinite relaxation such that they are relaxed into convex
inequalities and . Furthermore, they can be
written as linear matrix inequalities (LMI):

(15)

We now have transformed the LS problem into a convex opti-
mization problem:

(16)

We note, however, that this simplistic convex optimization
formulation is still prone to ambiguities. For example, the value
of the LS function (2) would not change when in-
creases and decreases or decreases and in-
creases. Therefore, we need to add a penalty term here to avoid
the ambiguity. In other words, we introduce an extra penalty

into the objective function where is a
penalty factor.

Finally, we recast the constrained minimization problem into
an SDP form of

(17)

The convex optimization problem of (17) can be solved effi-
ciently using interior point methods [15]. In this paper, we apply
the popular SDP solvers SeDuMi [16] to numerically solve the
problem in our tests and simulations.

We note that in the SDP formulation, a suitable selection of
is needed to achieve good solutions. Heuristically, the weighting
factor should be related to the distance between the sensor and
the source nodes. Therefore, we propose to determine the value
of proportional to the average TOA measurement

(18)

The suitable value of will be discussed later when we present
the simulation results.

B. Min-Max Formulation Under Unknown
Noise Characteristics

The LS formulation is optimum in the maximum likelihood
sense when the TOA measurement noise is assumed to be i.i.d.
Gaussian. In practice, however, TOA measurement noise may
exhibit different characteristics. Therefore, there is strong in-
centive for us to develop effective localization algorithms that
are less dependent of noise assumptions.

Steering away from the LS objective function, we can rewrite
the TOA measurement of (1) into

(19)

Squaring in both sides, we get

(20)

for . The right-hand side of (20) is a noise term
that is not independent for different indexes . At modest to high
SNR, dominates and hence .
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One way to estimate the optimum without assuming any
particular characteristics on is to minimize the norm of

. This approach makes no assumption on the noise distribu-
tion or on the noise correlation. It simply tries to minimize the
peak error. Therefore, its performance is expected to be less sen-
sitive to the noise distribution or correlation. Thus, we propose
to adopt the min-max criterion for location estimation via

(21)

Note again that this min-max formulation (21) is a nonconvex
problem. Nevertheless, it is quite amenable to semidefinite re-
laxations as shown below.

First, let us introduce two auxiliary variables and
. They allow us to rewrite (21) as

(22)

which is a convex function in terms of variables , , , and
. However, the two equality constraints and

are not convex and need to be relaxed into approximate convex
constraints. In order to transform the problem formulation into
a convex optimization problem, we introduce two convex relax-
ations on the equality constraints. Specifically, we relax the two
equalities and into inequalities
and , respectively. Both inequalities can be conveniently
expressed in terms of linear matrix inequalities:

(23)

To summarize, the min-max TOA estimation criterion can be
relaxed into a SDP convex optimization problem:

(24)

Similarly, the optimal solution of the min-max algo-
rithm (MMA) in (24) can be found using interior point
methods such as SeDuMi [16].

C. Comparisons

When comparing the 2-step least square (2LS) algorithm and
the min-max algorithm (MMA) for source localization in TOA
models, it is clear that the MMA has lower computation com-
plexity. Additionally, the MMA does not require the selection
of tuning parameter and therefore easier to use. On the other
hand, because of the measurement processing by MMA in
squaring the measurement , the resulting noise enhancement
may lead to some performance loss. The complexity tradeoff
and performance difference between the two algorithms will be
shown later in our simulation results.

IV. ROBUST LOCALIZATION UNDER SENSOR

LOCATION ERRORS

In preceding development of the 2LS and MMA source lo-
calization algorithms, we have made the assumption that the
network knowledge of the sensor locations is accurate. In other
words, is accurately known. We should consider the cases
in practice when such knowledge may not be exact because of
imperfections in sensor deployment, positioning, and delay of
position updating. In fact, it is often difficult to obtain precise
locations of the sensor nodes in sensor networks. We are inter-
ested in making source localization more robust under such in-
formation uncertainties. In this section, to address the problem
of sensor location errors, we focus on developing robust local-
ization methods for source localization that can accommodate
inaccurate sensor locations.

A. Modeling Sensor Location Uncertainty

To model the sensor location uncertainty, let
denotes the known location of the th anchor node in which

is the actual sensor location whereas is the location error
bounded by . We can apply the first-order Taylor ap-
proximation to on to obtain

(25)

Substituting the approximation of (25) into (1), the TOA mea-
surement can be approximated by

(26)

Once again, since is not linearly related to in (25), there is
no efficient unbiased estimator in this case according to [13].

For convenience, denote in which

. Because

(27)

we have constraints , for . This
box constraint can also be further relaxed into the ellipsoid con-
straint . Under the constraints of sensor location
uncertainty, we now modify the 2LS and MMA algorithms to
take into account the sensor location errors.

B. Robust 2LS Formulation

By neglecting the high order terms in (26), we can derive a
least square based formulation for localization with inaccurate
position anchor nodes. Our objective is to minimize the LS for-
mulation under a constraint on the location uncertainty . In par-
ticular, under the ellipsoid error constraint, our problem can be
formulated into

(28)
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Similarly to the original 2LS formulation in the previous sec-
tion, we first estimate from

(29)

Define , , ,
, by substituting with in (12), we can rewrite

the LS objective function (28) as

(30)

In order to ensure robustness, we aim to minimize the LS error
under the worst possible sensor location errors .

By minimizing the maximum LS objective function, we can
formulate the problem as

for all (31)

The constraint in (31) is equivalent to the implication relation-
ship

(32)

which can be written in matrix forms as

(33)

where .
To find feasible solutions, we resort to the S-procedure in

control theory [17] as in [6]. More specifically, the implication
(33) holds if and only if there exists a such that

(34)

This convex constraint can now be added into the 2LS algorithm
to improve the robustness against the sensor location error.

Additionally, similar to (17), we have the constraints for ,
where

(35)

(36)

for , . The two equalities
and can be relaxed as

(37)

Combing all the constraints, we obtain the following SDP for-
mulation for robust 2LS (R2LS) algorithm below

(38)

Using the SDP solver Sedumi [16], we can get the source loca-
tion based on this R2LS algorithm.

C. Robust Min-Max Algorithm for Localization

We now develop a robust min-max algorithm (RMMA) for
source location under sensor (anchor) location errors. We can
extend the min-max formulation to the inaccurate anchor node
position case by incorporating the additional location uncer-
tainty constraints.

More specifically, we obtain the following formulation:

(39)

Similarly to the development of MMA, we introduce two aux-
iliary variables and , and rewrite (39) into

(40)

Then, we have the following optimization problem to solve:

for all (41)

We now derive the necessary constraints to develop a convex
optimization algorithm. Let
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the constraints in (41) are equivalent to the two implication re-
lationships:

(42)

Furthermore, we can express the implications in matrix form,
where

(43)

Based on the S-procedure mentioned earlier, the implications
hold if and only if there exist and such that

(44)

Thus, we now have convex inequalities in (44) to be incorpo-
rated into the original MMA for more robust location estimates.

As in the development of the original MMA, the two equal-
ities and can be relaxed into inequalities

and , respectively. By expressing them in
terms of linear matrix inequalities, we now have convex con-
straints

(45)

Combining the preceding convex constraints, we arrive at an
RMMA in a SDP formulation

(46)

As mentioned before, the RMMA can also be solved via interior
point methods.

D. CRLB Under Sensor Node Location Errors

We would like to analyze the effect of node location error
on the performance limit of source localization. Similar to [18],

[19], we integrate the sensor location errors when deriving the
Fisher information matrix.

Let the TOA measurement noise be i.i.d. Gaussian with
zero mean and variance and let the anchor node location er-
rors also be i.i.d. Gaussian with zero mean and variance .
Under these assumptions, the measurement data ,
and follow a joint Gaussian distribution

(47)

Define . The log-likelihood function
of the location estimation (ignoring the constant term) is given
by

(48)

From (48), we can determine the th element of the
Fisher information matrix as

(49)

(50)

(51)

Additionally, we have, for ,

(52)

and

(53)

Hence, the CRLB of the unbiased estimate is

(54)
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TABLE I
COMPLEXITY COMPARISON OF DIFFERENT ALGORITHMS

Despite the fact that no efficient unbiased estimate exists for
the TOA measurement model, the CRLB can still provide a rea-
sonable benchmark.

V. COMPLEXITY COMPARISONS

We compare the complexity of different algorithms discussed
thus far. We apply the result of [20] to evaluate the complexity of
various convex algorithms. In Table I, we summarize algorithm
complexities in terms of the number of iterations and operations
in each iteration. We label the classic TDOA algorithm in [2]
as “Classic-TDOA”, the SDP TDOA algorithm in [6] as “SDP-
TDOA”.

From this comparison, we can see that the complexity of
the proposed new TOA algorithms are higher than the classic
TDOA algorithms. This is the tradeoff for more reliable con-
vergence performance. The 2LS approach and the SDP-TDOA
approach have similar complexity due to similar semidefinite re-
laxation. Since the 2LS and the R2LS algorithms require more
slack variables to optimize, they also have higher complexity
than the MMA and the RMMA algorithms. The complexity dif-
ference is more pronounced in terms of the operations in each
iteration particularly when (the number of sensors) is large.

VI. SIMULATION RESULTS

A. Simulation Setup

In this section, we provide several test examples to demon-
strate the performance of the proposed TOA algorithms and in
comparison with the classic TDOA algorithm [2] (labeled as
Classic-TDOA) and the SDP TDOA algorithm [6] (labeled as
SDP-TDOA). Since the noise covariance matrix of the SDP-
TDOA algorithm is not invertible if we include all the pairwise
TDOA measurements, we only select one anchor node as the
reference node and utilize the corresponding TDOA measure-
ment for estimation.

We note that some localization works in literature add a local
refinement search step after finding an approximate solution to
improve the overall performance [6], [9], [21]. Equivalently, this
implies a two step procedure: a) convex optimization solution
for an initial estimate; b) a local refinement to minimize the non-
linear LS criterion (eq. (2)) based on the initial point from step
a). Most of the time, however, we see that the gradient search
for the optimum LS solution (2) using Powell algorithm [22]
provides a final convergence point near the true source location.
Typically, the closer the initial point is to the true location, the
faster the local search will converge to the final solution, and the
less likely it will be trapped in the local minimum.

Note that there is no established standard for performance
comparison. Thus, two ways of comparison can be made. One is
to compare the performance of different algorithms after step a),
and the other is to compare the performance after step b). How-
ever, if we only demonstrate the localization results after the ad-
ditional local search step b), the results would obscure the effect
of the different algorithms in step a). In fact, without results from
step a), the final convergence would be misleading as it is dif-
ficult to differentiate the residual error of different algorithms.
This is because when using the same local search criterion (2),
the search results often converge to the same point; such is the
case that we have observed for the examples we tested. There-
fore, in order to make a fair comparison of different algorithms,
we present the performance of different algorithms without ad-
ditional local search in our paper. We can then show the true
result of different optimization procedure. As a result, compar-
ative results from purely the optimization step are more illustra-
tive of their efficacy.

In all the results we will show, additional local search step b)
will also be implemented by using Powell algorithm for im-
plementing the OLS. Hence, the OLS results represent the
final convergence of various comparative algorithms after local
search step b).

We remark on the implication of the comparison after step a).
The error surface defined by (2) is quite complex, depending
on the locations of the sensors and the source. Thus, there is no
guarantee that smaller localization error after the optimization
algorithm necessarily leads to faster and more accurate conver-
gence for the local search. Nevertheless, based on some known
results [9], [21] with respect to the existence of local minimum
for localization problems, we expect that the closer the “raw”
result is to the true location, the faster the local search will con-
verge to the final solution, and the less likely it will be trapped
in local minimum.

In our test, we place eight sensors in a 2-dimensional area at
, , ,

, , ,
, . We evaluate the root

mean-square error (RMSE) of the source position as the perfor-
mance metric against different strengths of the noise standard
deviation. For simplicity, we convert the noise into the distance
domain.

In the numerical results, we include both the CRLB for the
TOA model derived in Section III and the CRLB of the TDOA
model which can be found in [14]. In the figures, these bounds
are labeled as CRLB-TDOA and CRLB-TOA, respectively.

B. Monte Carlo Simulations

Example 1: In this example, the source is placed at point
, which is inside the convex hull formed by the sensor/

anchor nodes. The noise is generated as i.i.d. Gaussian, and
is randomly chosen with normal distribution of zero mean and
variance of 4. The penalty factor is set to for the
2LS algorithm. We consider no sensor location errors. In Fig. 1,
we compare the performance of Classic-TDOA, SDP-TDOA,
2LS, MMA, and OLS algorithms. It can be seen that the per-
formance of the proposed new TOA algorithms are better than
Classic-TDOA and SDP-TDOA approach. The performance of
2LS and OLS algorithms are very close to each other and also
close to the CRLB of the TDOA model. This means that the 2LS
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Fig. 1. Comparison of Classic-TDOA, SDP-TDOA, 2LS, MMA and OLS al-
gorithms when a source node is inside the convex hull, Gaussian noise.

Fig. 2. Comparison of Classic-TDOA, SDP-TDOA, 2LS, MMA and OLS al-
gorithms when a source node is outside the convex hull, Gaussian noise.

algorithm can achieve performance very close to the CRLB if
pairwise TOA subtractions are utilized to generate the TDOA
measurement data.

Example 2: In this example, We position the source node at
, which is now outside the convex hull of the sensor

nodes. We set to be normally distributed with zero mean and
variance of 4 and i.i.d. Gaussian measurement noise. The pa-
rameter for 2LS algorithm is set to . The perfor-
mance of the various algorithms along with the bounds are given
in Fig. 2.

From the results, we can see that the OLS provides the best
performance. In fact, because of the 3-dB SNR loss in the TDOA
model, OLS generated performance better than the CRLB under
TDOA. The MMA approach is better than the Classic-TDOA
and is about 2 dB away from the CRLB of the TDOA model.
Unfortunately, both SDP-TDOA and 2LS fail to give a good
estimation in this case. One reason for this is that the source
node is far away and the SDP optimization is unable to escape
a local minimum. It is also interesting to note that the OLS al-
gorithm out performs the CRLB derived for the TDOA model.

Fig. 3. Selection of the penalty factor � in 2LS.

Fig. 4. Comparison of Classic-TDOA, SDP-TDOA, 2LS, MMA and OLS algo-
rithms when a source node is uniformly distributed in a square region, Gaussian
noise.

This comparison demonstrates the drawback of preprocessing
that led to the TDOA model. Moreover, we also observe that a
significant gap exists between the CRLB-TOA and all the tested
algorithms. This observation illustrates that there may still exist
room for potentially significant improvement of source local-
ization in the TOA model. Thus, we should continue the de-
velopment of new and better algorithms to improve the source
localization accuracy based on TOA measurement.

Example 3: Here we test the sensitivity of the proposed
2LS algorithm to the selection of the penalty factor. We fix the
Gaussian noise variance to 15 dB and the source position to

and . The RMSE values of by applying
different values of is compared in Fig. 3. It can be seen that
the algorithm is not very sensitive to the choice of the penalty
factor . Our experience shows that can be chosen between

and for reliable estimation of .
Example 4: We place the source node in the square region:

. For
each , we randomly generate 3000 locations uniformly. The
noise is i.i.d. Gaussian and for the 2LS algo-
rithm. is randomly chosen with normal distribution of zero
mean and variance of 4. In Fig. 4, we show the performance
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Fig. 5. Comparison of Classic-TDOA, SDP-TDOA, 2LS, MMA and OLS al-
gorithms when a source node is uniformly distributed in a square region, uni-
formly distributed noise.

of different algorithms. The results show that when the source
is at different positions, the brute force OLS approach gives
the best performance. The 2LS and the MMA significantly out-
perform the Classic-TDOA approach by moving closer to the
global minimum.

Example 5: In this example, we also position the source node
in the square region:

like in Example 4. We now consider uniformly
distributed noise in this case and test the performance of dif-
ferent algorithms in this example. The signal transmission time

is normally distributed with zero mean and variance of 4. The
penalty factor is set to for the 2LS algorithm.
From Fig. 5, we can find that when the noise is uniformly dis-
tributed, our proposed two algorithms are still robust and con-
tinue to work well. Both of them are better than the SDP-TDOA
approach, and offer about 4 dB gain over the Classic-TDOA al-
gorithm, and are within 3 dB from the OLS approach.

Example 6: We consider, in this example, the effect of sensor
location error. We place the source node in the square region:

and
use Gaussian model for the noise of in the TOA measurement.
The penalty factor of the R2LS algorithm is set to

. We compare the performance of our R2LS and RMMA
algorithm with the robust SDP-TDOA algorithm (denoted by
RSDP-TDOA) under inaccurate sensor location in Fig. 6. No-
tice that we let denote the location error variance of the an-
chor or sensor nodes. By default, represents the case in-
volving only accurate sensor locations. The simulation results in
Fig. 6 show that when the sensor node location errors are modest
to relatively low , the proposed R2LS and RMMA
can still obtain good estimates, and are better than the robust
SDP-TDOA approach. When the sensor node location errors
are significant, however, the performance loss is relatively sub-
stantial. In this case, the errors in the sensor node locations are
so large that our original approximation neglecting high order
terms in the sensor location uncertainty model simply does not
hold. We also note that since the RMMA method involves more
optimization variables, its performance is slightly worse than
R2LS under sensor location uncertainty.

Fig. 6. Comparison of R2LS, RMMA and RSDP-TDOA algorithm with accu-
rate and inaccurate anchor node locations, Gaussian noise.

C. Summary

From the simulation results, we find that our proposed two
algorithms provide a better estimate compared with Classical-
TDOA and SDP-TDOA approaches. The 2LS algorithm has a
similar formulation as the SDP-TDOA approach. However, the
2LS approach utilizes measurements and whereas the SDP-
TDOA algorithm uses measurements, and they adopt
different objective functions. As a result, the performance of
the 2LS approach is better. The MMA approach is less sensitive
to the relative location of the source node to the sensors, and
performs well in all cases. When there are location errors for
the sensors, the proposed R2LS and RMMA methods can still
give a good estimation.

VII. CONCLUSION

We investigate the problem of source localization in wireless
sensor networks based on the practical TOA model. Directly
taking the TOA measurement, our study is less susceptible to
the 3 dB noise enhancement and does not require prior knowl-
edge on the signal transmission time. We develop two convex
optimization methods for direct source localization using SDP.
We also propose means to obtain robust location estimation
when sensor node locations are subject to errors. Our results
demonstrate the performance advantage of the newly developed
TOA algorithm for source localization over the traditionally
used TDOA preprocessing, under various noise conditions and
in the presence of sensor location errors.
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