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Abstract—We consider a setting in which a receiver uses a 
sequence of short, narrowband training burst signals from a 
transmitter to jointly estimate the time delay and frequency offset 
of its local clock with respect to the transmitter. A key challenge 
in this estimation problem is in handling cycle-slips arising from 
ambiguities in phase unwrapping when (a) the repetition rate of 
the training signal is small compared to the frequency offset, and 
(b) the bandwidth of the training signal is small relative to the 
carrier frequency. We propose a novel Bayesian filter-bank 
approach to handling these ambiguities. We present numerical 
simulations to show the effectiveness of this approach and 
compare our results with the fundamental posterior Cramer-Rao 
lower bound.  The filter achieves the bound for signals between 
about 5 and 35 dB SNR, showing that it is optimal in this regime.  

Keywords-frequency estimation, cycle slips, filter banks, phase 
unwrapping, nonlinear filtering, posterior Cramer-Rao bound 

I. INTRODUCTION 
We consider the problem of a receiver jointly estimating the 

time delay and frequency offset of its clock with respect to a 
transmitter. While this is a classic estimation problem, we 
focus on one aspect of the problem that has not been 
systematically studied: estimation algorithms that can handle 
phase unwrapping ambiguities on delay and frequency 
estimates. 

The setup for our estimation problem is illustrated in Fig. 1, 
which shows a system where a transmitter regularly sends a 
pulsed training signal of duration 𝑇𝑝. The receiver’s clock, in 
general, is driven by a different local oscillator than the one the 
transmitter uses, and has timing and frequency offsets with 
respect to the transmitter’s clock. The problem is to estimate 
these offsets. We consider a nonlinear filtering approach where 
the receiver takes an initial estimate and updates it every time it 
receives a training signal. The clock offsets vary in time due to 
the stochastic dynamics of the clock drifts, and/or Doppler 
effects due to relative motion between the transmitter and the 
receiver. 

There is substantial literature on frequency and delay 
estimation, which are classic problems in estimation theory. 
Delay estimation using narrowband training signals was 
studied by Weiss and Weinstein [1], who derived bounds 
tighter than the CRLB that explicitly account for the effect of 
carrier phase ambiguities. 

 
Figure 1.  Signaling set-up for delay/frequency tracking problem. 

To see the effect of phase ambiguities on the delay 
estimation problem, consider a narrowband training signal 
𝑠(𝑡) = 𝑅𝑒[𝑏(𝑡)𝑒𝑗2𝜋𝑓𝑐𝑡  ]  sent by the transmitter. A noisy, 
delayed version of this signal r(𝑡) = 𝑅𝑒�𝑏(𝑡 − 𝜏)𝑒𝑗2𝜋𝑓𝑐(𝑡−𝜏)� is 
received at the receiver. Now consider the same signal received 
with a slightly different delay 𝜏′ = 𝜏 + 1/𝑓𝑐 . This new 
signal 𝑟′(𝑡) = 𝑅𝑒 �𝑏�𝑡 − 𝜏′�𝑒𝑗2𝜋𝑓𝑐�𝑡−𝜏

′�� = 𝑅𝑒�𝑏(𝑡 − 𝜏 −
1/𝑓𝑐)𝑒𝑗2𝜋𝑓𝑐(𝑡−𝜏)� has the same carrier phase as r(𝑡) and differs 
from r(𝑡) only in the envelope 𝑏(𝑡 − 𝜏 − 1/𝑓𝑐). However, by 
definition, the envelope narrowband signal 𝑏(𝑡)  varies very 
little over a carrier period i.e. 𝑏(𝑡 − 𝜏 − 1/𝑓𝑐) ≈ 𝑏(𝑡 − 𝜏). In 
other words, a delay of 𝜏′ = 𝜏 + 1/𝑓𝑐  is virtually 
indistinguishable from a delay of 𝜏.  

A recently introduced maximum likelihood estimation 
(MLE) Newton-search algorithm [2] approaches the Weiss-
Weinstein performance bounds. The MLE can fail at modest 
SNR, since it tracks only a single likelihood maximum.  The 
contribution of this work is that it develops a Bayesian 
nonlinear filtering scheme that can track several likelihood 
local maxima.  The particle filter is less likely than the MLE to 
be captured by suboptimal local maxima, improving 
performance.  The resulting state estimate is evaluated as the 
conditional expectation over the entire posterior density.  We 
evaluate the posterior Cramer-Rao bound (PCRB) and show 
that the filter achieves the bound for a range of SNR values.  
No unbiased estimator can achieve better estimation 
performance than the particle filter in this regime.   

This paper is organized as follows. Section II formulates 
the problem, Section III details the particle filter solution, and 
Section IV derives the posterior Cramer-Rao bound.  
Numerical results are given in Section V.  Section VI 
concludes with a discussion of combined delay and frequency 
ambiguities due to phase unwrapping, and suggests how this 
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work can be extended to incorporate slow-time jitter to address 
the problem of frequency ambiguities. 

II. PROBLEM FORMULATION 
Our objective is to track the phase offset at a clock on a 

mobile platform relative to the clock on a fixed reference.  The 
reference clock is assumed perfect and the phase offset is 
generated by the combined effects of the mobile’s clock drift 
and motion.  At discrete times 𝑡𝑘 = 𝑘𝑇 , 𝑘 = 1, … ,𝑁𝑘 , the 
reference transmits the passband pulse of duration 𝑇0 ≪ 𝑇 with 
envelope 𝑏(𝑡) and carrier frequency 𝑓𝑐 : 

𝑢𝑘
𝑝(𝑡) = 𝑅𝑒[𝑏(𝑡)𝑒𝑗2𝜋𝑓𝑐𝑡  ], 0 ≤ 𝑡 ≤ 𝑇0. (1) 

We follow radar literature practice and refer to 𝑡𝑘 as the slow-
time index and let 𝑡  denote the fast-time within the pulse 
relative to 𝑡𝑘 . The signal is received at the mobile and 
demodulated to yield the complex baseband waveform 

𝑦𝑘(𝑡) = 𝐴𝑏(𝑡 − 𝜏𝑘) exp ( 𝑗(−2𝜋𝑓𝑐𝜏𝑘 − 2𝜋𝜈𝑘𝑡)
+ 𝑛𝑘(𝑡). 

(2) 

Denoting clock phase on the mobile at 𝑡𝑘 by 𝜃𝑘, the total 
delay due to propagation and clock drift is 𝜏𝑘 = 𝜃𝑘/2𝜋𝑓𝑐.  The 
instantaneous frequency of the mobile is 𝑓𝑘 = 𝑓𝑐 + 𝜈𝑘 = 𝑓𝑐 +
𝜃𝑘̇/2𝜋 .  The power spectral density of the baseband noise 
𝑛𝑘(𝑡) is 𝑁0.  The phase between the carrier and the envelope 𝑏 
is 0.  The received amplitude 𝐴 = 1 is assumed known.  𝜏  and 
𝜈 are slowly varying and can be treated as constant within the 
pulse.   

The phase is tracked by a discrete-time filter with slow-time 
sampling interval 𝑇.  The phase is modeled using a two-state 
model of the oscillator dynamics,  

𝑥𝑘+1 = 𝐹𝑥𝑘 + 𝑤𝑘+1 ,  (3) 

where 𝑥𝑘 = �𝜃𝑘, 𝜃̇𝑘�
T

.  The state transition matrix 𝐹  and the 
real-valued 0-mean 2-vector white Gaussian process noise obey 

𝐹 = �1 𝑇
0 1�    𝑤𝑘~𝑁(0,𝑄) (4) 

and 

𝑄 = 𝑞𝑐2 �
𝑇 0
0 0� + 𝑞𝑚2 �

𝑇3/3 𝑇2/2
𝑇2/2 𝑇

�. (5) 

The leading contribution of the clock drift is Brownian motion 
with strength 𝑞𝑐, while the platform motion contributes Wiener 
process noise of strength 𝑞𝑚.   

On the mobile, the received signal is sampled in fast-time 
with period 𝑡𝑠 . The sampled signal is 𝑦𝑘[𝑙] = 𝑦𝑘(𝑙𝑡𝑠),  
𝑙 = 1, … ,𝑁𝑠 .  The covariance of the complex noise samples 
𝑛𝑘[𝑙] is 𝜎𝑛2 = 𝑁0/𝑡𝑠 . Denote the sampled replica signal with 
delay 𝜏′ = 𝜃𝑘/(2𝜋𝑓𝑐) and frequency offset 𝜈′ = 𝜃𝑘̇/(2𝜋) by 
𝑏�𝜏′, 𝜈′�[𝑙] = 𝑏(𝑡𝑠𝑙 − 𝜏′) exp( 𝑗�−2𝜋𝑓𝑐𝜏′ − 2𝜋𝜈′𝑡𝑠𝑙�. 

 

 
Figure 2.  SIRPF Algorithm 

Up to an additive constant, the log-likelihood ratio for the 
observed data 𝑦𝑘[𝑙] given 𝑥𝑘 is 

log𝑝(𝑦𝑘|𝑥𝑘) =
1
𝜎𝑛2

Re�𝑦𝑘[𝑙]𝑏∗�𝜏′, 𝜈′�[𝑙]
𝑁𝑠

𝑙=1

 
(6) 

III. PARTICLE FILTERING 
Particle filtering [3] is a Monte Carlo approximation to the 

Bayes-optimal recursive filter.  For this study, we have 
implemented the Sampling Importance Resampling Particle 
Filter (SIRPF) algorithm detailed in [4].  At time step 𝑘 the 
algorithm stores samples of the oscillator state (particles) 𝑥𝑘𝑖 , 
and normalized weights 𝑚𝑘

𝑖 ,   𝑖 = 1, … ,𝑁𝑝   used to 
approximate the posterior density  

𝑝(𝑥|𝑦𝑘 , … , 𝑦0) ≈ ∑ 𝑚𝑘
𝑖 𝛿�𝑥 − 𝑥𝑘𝑖 �

𝑁𝑝
𝑖=1 . (7) 

The samples and weights are updated according to Fig. 2.  
In SIRPF, (3) is used to draw time-updated samples 
𝑥𝑘𝑖 ~𝑝(𝑥|𝑥𝑘−1𝑖 ).  The time-updated samples are used in (6) to 
update the weights as 𝑚𝑘

𝑖 = 𝑝�𝑦𝑘�𝑥𝑘𝑖 �𝑚𝑘−1
𝑖 , which are then 

normalized and used to evaluate the estimated state 𝑥�𝑘  and 
error covariance 𝑃𝑘 . If this recursion is followed over time 
without interruption, the system degenerates and most of the 
weights become small, while a single weight tends towards 
unity.  This pathological behavior is avoided by computing the 



effective sample size 𝑁𝑒𝑓𝑓 = 1/∑ (𝑤𝑘𝑖 )2𝑁𝑝
𝑖=1  and resampling 

with replacement when 𝑁𝑒𝑓𝑓 < 𝑁𝑟𝑒𝑞.  In principle, the required 
number of effective particles is a parameter that could be 
optimized, but in this work, 𝑁𝑟𝑒𝑐 = 𝑁𝑝/2.   

IV. POSTERIOR CRAMER RAO BOUND 
Let  𝑥�𝑘 be an estimator of the system state 𝑥𝑘.  The PCRB 

on the estimation error is [5]   

𝐸[(𝑥�𝑘 − 𝑥𝑘)(𝑥�𝑘 − 𝑥𝑘)T] ≥ (𝐽𝑘)−1, (8) 

where the Fisher information matrix 𝐽𝑘 obeys the recursion  

𝐽𝑘+1 = 𝐷𝑘22 − (𝐷12)T(𝐽𝑘 + 𝐷11)−1𝐷12, (9) 

with 𝐷11 = 𝐹T𝑄−1𝐹, 𝐷12 = −𝐹𝑇𝑄−1, 

 𝐷𝑘22 = 𝑄𝑘−1 −
𝜕2Λ𝑘
𝜕𝑥𝑘

2 , (10) 

and Λ(𝑥𝑘) = 𝐸[log 𝑝(𝑦𝑘|𝑥𝑘) ] .  The expected log-likelihood 
is evaluated by approximating (6)  as an integral, yielding 

Λ(𝑥𝑘) =
2
𝑁0

𝜒𝑏�τ′ −τ, 𝜈′ − 𝜈� 

×  cos ( 2𝜋𝑓𝑐�𝜏 − 𝜏′� − 2𝜋(𝜈 − 𝜈′)(𝜏 + 𝜏′)/2), 

(11) 

where the ambiguity function for waveform 𝑏 is  

𝜒𝑏(τ, 𝜈) =
∫ 𝑏(𝑡 + τ/2)𝑏∗(𝑡 −τ/2) exp (−𝑗2𝜋𝜈𝑡)𝑑𝑡. 

(12) 

In the following simulation example, we use the Gaussian 
chirp waveform with pulse length 𝑇𝑝, chirp rate 𝛼,  𝑏𝐺𝐶(𝑡) =
exp �−𝜋�𝑡/𝑇𝑝�

2 + 𝑗𝜋𝛼𝑡2�, and ambiguity function 

𝜒𝐺𝐶(𝜏, 𝜈) = 𝑇𝑝
√2

exp �− 𝜋
2
�� 𝜏

𝑇𝑝
 �
2

+ �𝑇𝑝(𝜈 − 𝛼𝜏)�
2
��. 

(13) 

For 𝑏𝐺𝐶 ,  the energy per pulse is 𝐸𝑝 = 𝑇𝑝/√2 and the output 
SNR is 𝜂 = 2𝐸𝑝/𝑁0 . The log-likelihood derivatives in (10) 
required to evaluate the Fisher information (9) are  

𝜕2Λ𝑘
𝜕𝜃2

= − 𝜂
(2𝜋𝑓𝑐)2

�(2𝜋𝑓𝑐)2 + 𝜋
𝑇𝑝2

+ 𝜋𝛼2𝑇𝑝2�, 
(14) 

𝜕2Λ𝑘
𝜕𝜃2̇

= − 𝜂
(2𝜋𝑓𝑐)2

�𝜋�𝑓𝑐𝑇𝑝�
2 + 𝜃2�, (15) 

and 
𝜕2Λ𝑘
𝜕𝜃𝜕𝜃̇

= 𝜂
2𝜋𝑓𝑐

�𝛼𝑇𝑝
2

2
+ 𝜃�. (16) 

 
Figure 3.  Phase and phase rate error results (blue diamond) compared to the 

CRLB (green circle) and filter-generated (red cross) error estimate. 

V. RESULTS 
Fig. 3 shows how the filter performance varies with output 

SNR, 𝜂 = 2𝐸𝑝/𝑁0 .  In this simulation we have used 𝑁𝑝 =
1000 particles.  The signal parameters are filter period 𝑇 = 1 s, 
center frequency 𝑓𝑐 = 200 MHz, pulse width 𝑇𝑝 = 200 𝜇 s, 
bandwidth 𝐵 = 𝛼/𝑇𝑝 =  20 MHz, and sampling period 𝑡𝑠 =
50 ns.  The clock process noise parameter is 𝑞𝑐 = 2 ⋅ 10−10√𝑠, 
which corresponds to an Allan deviation [6] 𝜎𝑦(𝜏) = 𝑞𝑐/√𝜏 
comparable to that of existing chip scale atomic clocks [7].  
The motion process noise was selected as representative of a 
tethered aerostat application and is 𝑞𝑚 = 0.1 m/s-3/2.  For each 
SNR value, 100 Monte Carlo trials were performed.  Each trial 
ran for 100 s of simulated time.  For each trial, the filter was 
initialized with truth and run for 50 time steps (50 s) to avoid 
initialization transients.  Error data was then collected over the 
last 50 time steps.  The exhibited error data (𝜃𝑅𝑀𝑆 and 𝜃̇𝑅𝑀𝑆) 
are the RMS error averaged over trials for each SNR value.  
The PCRB results ( 𝜃𝑃𝐶𝑅𝐵  and 𝜃̇𝑃𝐶𝑅𝐵)  were obtained 
analogously, averaging over the second 50 time steps of each 
trial (note that the PCRB depends on the realized trajectory 
through the 𝜃 -dependance of the Fisher information).  The 
plots also show the average estimated error 𝑃𝑘  (𝜃𝑃  and 𝜃̇𝑃) 
computed by the filter.   At high SNR (above about 5 dB), the 
three error measurements are in good agreement.  At lower 
SNR, the filter does not achieve the PCRB, but shows the 
characteristic jump in error away from the CRB in the Weiss-
Weinstein region.   

VI. FREQUENCY ESTIMATION AMBIGUITIES 
The focus up to this point has been on the effect of phase 

ambiguity on delay estimation, but similar ambiguities also 
arise for frequency estimation when the interval between 
training signals becomes large. The frequency estimation 
problem with infrequent retransmissions of short duration 
training signals is the mathematical dual of delay estimation 
using narrowband signals. 



 
Figure 4.  Frequency estimation performance with low jitter.  The best filter 

retains a frequency bias in this low-jitter case.    

This duality is explained as follows. Consider a simple 
estimation problem where a transmitter sends a training 
signal  𝑠(𝑡) = 𝑅𝑒[𝑏(𝑡)𝑒𝑗2𝜋𝑓𝑐𝑡]  and the receiver receives this 
signal with a frequency offset 𝑦(𝑡) = 𝑅𝑒�𝑏(𝑡)𝑒𝑗2𝜋(𝑓𝑐+∆𝑓)𝑡�. 
The receiver uses this signal to construct an estimate ∆𝑓�  of the 
frequency offset ∆𝑓 . Conceptually, this is equivalent to 
estimating the slope of the phase angle of 𝑦(𝑡)𝑏∗(𝑡) as it varies 
with time. Now consider a simple delay estimation problem 
where a transmitter sends the same training signal 𝑠(𝑡) =
𝑅𝑒[𝑏(𝑡)𝑒𝑗2𝜋𝑓𝑐𝑡  ] , which is received with a delay 𝑦(𝑡) =
𝑅𝑒[𝑏(𝑡 − 𝜏)𝑒𝑗2𝜋𝑓𝑐(𝑡−𝜏)]. Taking Fourier Transforms, we have 
Y (𝑓) = 𝐵(𝑓 + 𝑓𝑐)𝑒−𝑗2𝜋𝑓𝜏 , 𝑓 ≥ 0 , and we can think of the 
delay estimation problem as estimating the slope of the phase 
angle of 𝑌(𝑓)𝐵∗(𝑓 + 𝑓𝑐).  

 
Figure 5.  Frequency estimation performance with higher jitter.  The best 

filter converges to an unbiased estimate in this high-jitter case.    

Just as narrowband training signals lead to ambiguities of 
integer multiples of 1/𝑓𝑐  for delay estimates, short duration 
training signals repeated with period T lead to frequency 
estimate ambiguities of integer multiples of 1/𝑇. Increasing the 
bandwidth of the training signals helps resolve the 1/𝑓𝑐  delay 
ambiguities, and similarly, adding jitter (non-uniform slow-
time sampling) to the resynchronization interval T helps 
resolve the 1/𝑇  frequency ambiguities. In principle, given 
enough jitter, it is possible to obtain frequency estimates to an 
arbitrary degree of accuracy even with infrequent training 
signal transmissions. 

The potential utility of timing jitter for resolving frequency 
ambiguities is illustrated in Figs. 4 and 5, which show the 
estimation performance of a Kalman filter bank.  The figures 
show frequency and phase estimation errors of two Kalman 
filters. These filters represent the best and worst rms phase 
estimates out of a bank of Kalman filters, the different filters in 
the bank corresponding to different initializations of the 
frequency estimate. In Fig. 4, where the timing jitter is only 1% 
of the resynchronization interval, it can be seen that the “best 
filter” (as measured by rms phase estimation error) is not the 
filter with zero steady-state frequency error.  In contrast, Fig. 5 
shows that when the timing jitter is increased to 10% of the 
resynchronization interval, the “best filter” does converge to 
the correct frequency estimate. 
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