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SUMMARY

Motivated by applications to feedback control over communication networks where the actuation and
feedback signals are transmitted over communication channels, we study the stability of Adaptive Delta
Modulators (ADM) when the coded signal is a constant. The importance of such a setting arises because
a common control task is to track a dc input. It is known that a standard accumulator-based ADM has the
following highly undesirable characteristic: virtually all combinations of the algorithm parameters result
in 4-cycles, and the avoidance of 4-cycles requires a nongeneric initialization. Further, the steady state
oscillations that generically arise in the course of these cycles can have amplitudes that can be arbitrarily
close to the initial error. Consequently, we study the use of a forgetting factor in the ADM loop, and
provide a detailed stability analysis and design guidelines. Intuitively, adding a forgetting factor to the
classical ADM algorithm prevents 4-periodic cycles from occurring by damping them. In particular, we
show that for suitably chosen design parameters, the ADM with forgetting factor can track a constant
signal arbitrarily closely under mild assumptions. We provide simulations to demonstrate how much better
the modified algorithm performs relative to the original ADM algorithm in a remote control setting.
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1. INTRODUCTION

Adaptive Delta Modulators (ADM) are a popular device used in signal processing and communi-
cations for signal quantization with variable step-size. They seek to increase the dynamic range of
the signals that can be tracked while using binary coding.

While several variations of this device exist [1–6], the simplest [1, 7] is depicted in Figures 1
and 2. This algorithm has the attractive feature that the encoder, housed at a transmitter, need
only to transmit the sign of the decoding error. This alone, at least in principle, is enough for the
decoder at a receiver to reconstruct the encoded signal, at least in principle. However, as shown
in [8] this algorithm generates 4-cycles for generic initializations. As shown by example here
these cycles may have oscillations that correspond to errors of magnitude comparable to the initial
encoding error. Several papers, e.g. [3, 6, 8, 9], incorporate additional information on the magnitude
of the coding error in the transmitted signal. Thus, while Jayant’s algorithm required only a 1-bit
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Figure 1. A Delta Modulator at the transmitter.

Figure 2. A Delta Modulator at the receiver.

transmission, these others require a richer transmission protocol. In this paper we show that the
4-cycles can be ameliorated even if one retains the 1-bit transmission conceived by Jayant, by
incorporating a forgetting factor in a predictor that features in Jayant’s algorithm.

We now describe Jayant’s algorithm and our proposed modification. The structures in Figures 1
and 2 are at the encoder and decoder, respectively. The signal X (k) is coded into the binary
sequence e(k), taking values from {−1,1}. It is e(k) that is actually transmitted. The quantity �(k)
represents the variable step size which is increased or decreased according to the sign pattern
in e(k). Consequently, if the signal at the receiver input is identical to the transmitted value of
e(k), and �(0) is known at the receiver, then for all k�0, �(k) is known to the receiver. This
also guarantees that the signal X̂ (k) at the receiver is identical to x(k), the output of H (z) at the
transmitter, if x(0)= X̂ (0). Thus should x(k) approach X (k), so also would X̂ (k).

A heuristic algorithm for updating �(k) with the goal of forcing X̂ (k) to approach X (k), is
described in [1]. In Jayant’s algorithm H (z) is an accumulator: i.e. with �=1,

H (z)= 1

1−�z−1
. (1)

Generally, the agreed upon values of �(0) and x(0) (this is generally chosen to be zero) between
the transmitter and receiver are part of the communication protocol.

Our goal is to analyze the behavior of X̂ (k) and hence x(k) when the signal X (k)= x is
constant. The motivation for studying the ability of this ADM to track a constant signal stems
from issues connected to networked control systems that are acquiring increasing importance.
Specifically, in such a setting the plant and the controller must communicate the actuation signal
via a communication channel and must thus quantize it.

It has been noted in [10] that the variable step quantization of the actuation signal suffices to
achieve acceptable closed-loop performance. Thus, it behooves one to understand the effectiveness
of ADM’s in this setting, where the transmitter and receiver of the actuation signals host the
arrangements of Figures 1 and 2, respectively.

A typical control problem involves forcing the plant output to track a constant signal. This in
turn requires that at steady state both the signals that the ADM’s should track should be constants.
Thus at the minimum, desirable performance will necessitate that the signal X̂ (k) track a constant
X (k) in Figures 1 and 2 with reasonable fidelity.

When �=1, X̂ (k) either converges to x or enters into a 4-cycle. Further, 4-cycles are avoided
only with nongeneric initializations. In view of this conclusion this paper is dedicated to the
analysis when X (k) is a constant and when H (z) is as in (1) when a forgetting factor is included,
i.e. when 0<�<1. Intuitively, adding a forgetting factor to the classical ADM algorithm, prevents
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4-periodic cycles from occurring by damping them. In accordance with this intuition, we show
that in such a case, one can choose the system parameters to make the eventual coding error
arbitrarily small provided x(0)=0. The forgetting factor also allows the requirement X̂ (0)= x(0)
to be relaxed by forcing the initial error to decay.

We note that this paper builds on our conference papers [11–14], by providing additional insights,
expanding on proofs that were terse because of space constraints, and demonstrating the efficacy
of the algorithm in a remote control setting through simulations.

2. THE DETAILED ALGORITHM AND THE MOTIVATION FOR
THE ACCUMULATOR-BASED ADM

The detailed algorithm of [1] is given as follows with �(0)>0 and K>1:

x(k+1)=�x(k)+�(k)e(k) (2)

e(k)=sgn(X (k)−x(k)) (3)

�(k+1)=�(k)K e(k+1)e(k) (4)

with

sgn(a)=
{

1 if a�0

−1 if a<0
(5)

We now motivate this algorithm in the form proposed in [1], i.e. when �=1. Several features of
this algorithm are noteworthy. First observe that as the sequence �(k) is available at the receiver,
so is the sequence �(k), assuming perfect transmission and an agreed upon value for �(0). This
is so as �(k) increases by a factor of K if two successive values of X (k)−x(k) have the same
sign (i.e. e(k+1)e(k)=1), and decreases by the factor K if two successive values of X (k)−x(k)
have opposite signs (i.e. e(k+1)e(k)=−1). Thus, the reception of the �(k) sequence permits the
reproduction of �(k) at the receiver. Consequently if X̂ (0)= x(0) then the accumulation

X̂ (k+1)=�X̂ (k)+�(k)e(k) (6)

ensures that X̂ (k)= x(k).
Second, observe that (6) justifies the association of �(k) with variable step-size as at each sample

time X̂ (k) increases or falls by �(k), depending on whether x(k) and hence X̂ (k) is below or above
X (k).

Third, to understand the role of (3), (4) consider temporarily a constant � replacing �(k), and
Figure 3(a), which simultaneously depicts X (k) and X̂ (k): X (k) is the signal that ramps up to a
constant value, whereas X̂ (k) is the signal that changes in steps. In the ramping stage it is desirable
to have a large � so that X̂ (k) tracks X (k) quicker. The converse applies when X (k) is at a steady
state, where a large � results in a large granularity in the error between X̂ (k) and X (k). Contrast
this to Figure 3(b) where a smaller � is used. The result is slower tracking when X (k) is rising
rapidly, but smaller steady state error once X (k) has stopped changing. Thus, when the signal to
be tracked changes quickly, a large � is desirable. On the other hand when X (k) is not changing
quickly and X̂ (k) is close to it, a smaller � is desirable. The update laws (3), (4) judge the quality
of tracking by whether or not successive values of X (k)− X̂ (k) have the same sign. Their doing so
indicates that X̂ (k) must approach X (k) at a faster rate requiring a larger �. If on the other hand
the sign of X (k)− X̂ (k) alternates then X̂ (k) is likely to be close to X (k) and a decrease in � is
needed and implemented by the algorithm.
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(a) (b)

Figure 3. (a) Large � and (b) small �.

3. AN EXAMPLE OF 4-CYCLES WHEN �=1

We demonstrate now the occurrence of 4-cycles when �=1 and the input is constant. Throughout
this paper we make the following standing assumption.

Assumption 3.1
The signal X (k) in Figure 1 and (3) obeys, for some constant x̄ , X (k)= x̄ , for all k. Further �(0)>0
and K>1.

Now consider the situation where x(0)=0, and x>0. Define L to be an integer such that

�(0)
K L −1

K −1
<x̄ (7)

but

�(0)
K L+1 −1

K −1
�x̄ . (8)

Thus, because of (2)–(5), x(i)<x̄ ∀i�L , x(L +1)�x̄ and

�(L)=�(0)K L . (9)

Thus as e(L +1)=−1 and e(L)=1, �(L +1)=�(L)/K . Further now x(L +2)= x(L)+�(L)−
�(L)/K>x(L). Thus, a combination of �(0) and x̄ can always be found such that x(L +2)�x̄ ,
while the previous equations continue to hold. Then �(L +2)=�(L) and x(L +3)= x(L)+�(L)−
�(L)/K −�(L)<x(L)<x̄ . Thus, �(L +3)=�(L)/K and

x(L +4) = x(L)+�(L)−�(L)/K −�(L)+�(L)/K

= x(L)<x̄ .

Further, one also has �(L +4)=�(L) connoting the onset of 4-cycles. The swing between the
maximum and minimum values of x(i) in this cycle is �(L)(K +1)/K =�(0)(K L +K L−1), which
in view of (8) and (7) has a comparable magnitude to the initial error between x and x(0), being
O(K L ). Thus, the fidelity of reconstruction is almost as poor as the initial error, approaching it
arbitrarily closely for large K .

4. ADM WITH FORGETTING FACTOR: OVERVIEW OF RESULTS

As the accumulator-based algorithm (�=1) provides poor performance with constant inputs for
generic parameter combinations, and initial conditions, we now study the algorithm with

0<�<1. (10)
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As shown in the sequel, good design requires that � be close to 1. In fact, as we will see the
following additional assumption will be needed:

�K>1. (11)

It is highly doubtful whether arguments of the type advanced below would be effective without this
assumption. Note (10), (11) imply that K>1. As noted earlier our goal is to study this algorithm
for constant X (i), i.e. for all i ,

X (i)= x . (12)

In the remainder of this section, we outline the major results when 0<�<1, and contrast them to
the case of �=1. First note that a major difficulty with the �=1 case is the necessity of identical
initialization of the sequences x(k) and X̂ (k). As opposed to this, (10) ensures that the effect of
the difference x(0)− X̂(0) diminishes over time.

The second important difference relates to the convergence properties even when exact intial-
ization occurs. In particular when �=1, for generic combinations of �(0), K , x(0) and x , for some
N and all k>N one has four cycles of the form

x(k+4)= x(k) and �(k+4)=�(k).

Further, the largest |x(k)−x |, in the course of these 4-cycles, can be arbitrarily close to the initial
error |x(0)−x |.

When (10) holds on the other hand, the following positive parameter plays a pivotal role:

�= 1−�3

1−�2 + �
K

. (13)

Indeed we show that under the right conditions, whose enforcement will be discussed in Section 7,

lim
i→∞

sup�(i)�K �|x |. (14)

This in turn will be shown to imply that

lim
i→∞

sup |x(i)−x |�max{(1−�+K �)|x |, (�+K �−1)|x |}. (15)

Observe that �+K �−1 can be readily verified to be positive. As will be explained in Section 7 one
can make � arbitrarily small by choosing � arbitrarily close to 1. Consequently, one can achieve
an error that is an arbitrarily small fraction of x , the value being encoded. We will explain later
why (14) and (15) cannot generically be achieved when �=1. Finally, we note that apart from
selecting �≈1, for reasons to be clarified later, it is also desirable to select �K ≈1. This precludes
very large values of K .

5. ADM WITH FORGETTING FACTOR: SOME PROPERTIES

In this section we present a series of properties of (2)–(5) and (10)–(12), which will allow us to
conduct our stability analysis. For simplicity we will assume

x>0. (16)

For the moment, we note that the results of this section translate in a rather obvious way to the
case where x<0. For example under (16), the following set of indices that mark the points at
which x(i) transitions from below to above x will play an important role:

I+ ={i |x(i)<x and x(i +1)�x}. (17)

Henceforth �(i) for i ∈I+, i.e. at a point of transition of x(i) from below to above x , will be
referred to as a transitioning �. For x<0, on the other hand, the corresponding indices are those
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marking transitions in x(i) from above x to below. In general the results of this section can be
applied to the case of x<0, by reversing the relative positions of signal values, i.e. inequalities of
the form of x(k)�x must be exchanged with x(k)�x .

The first Lemma shows that e(i) must at some point change sign and that the sign changing
persists.

Lemma 5.1
Consider the system described in (2)–(5) and (10)–(12), (16), and I+ as in (17). Then I+ is an
infinite set.

Proof
Proof is by contradiction. If I+ is finite, then for all n exceeding some i , either x(n)<x or x(n)�x .
Suppose the former; then e(k)>0 for all k�i , and �(k)= K k−i�(l). Thus for all n>i

x(n) = �n−i x(i)+�(i)
n−1∑
k=i

�n−k−i−1K k−i

� �n−i x(i)+�(i)K n−i−1.

As K>1, and �<1, at some n, x(n)>x establishing a contradiction. Similarly x(k)�x for all k
greater than or equal to some i indicates that e(k)<0 for all k�i . Thus, at some n, x(n)<x , and
the above argument can be repeated to conclude that I+ is an infinite set. �

Recall that the claim of Lemma 5.1 is also valid in the case when �=1. The next Lemma gives
a lower bound on the values assumed by � when transitions occur. It also provides conditions for
x(i) to increase in value, but as we will see there is no corresponding nontrivial result for �=1.

Lemma 5.2
Consider the system described in (2)–(5) and (10)–(12), (16), and I+ as in (17). If i ∈I+, then

�(i)>(1−�)x . (18)

Further if for some j , x( j)<x and

�( j)>(1−�)x( j), (19)

then x( j +1)>x( j).

Proof
If i ∈I+, then x(i)<x and x(i +1)�x . Thus,

x�x(i +1)=�x(i)+�(i)<�x +�(i)

from which (18) follows. Further, under (19),

x( j +1)=�x( j)+�( j)>�x( j)+(1−�)x( j)= x( j).

Here emerges a key difference with the �=1 case: Namely, the lower bounds in (18) and (19) are
both zero, and thus trivially hold. We now provide a crucial property of this system. Specifically,
after the first sign change in e(i), no more than two successive values of x(i) may exceed x .

Lemma 5.3
If i ∈I+ and x(i +2)�x then under (2)–(5) and (10)–(12), (16), and I+ as in (17), x(i +3)<x
and

x(i +4)=�4x(i)+�(i)(1−�2)(1/K −�)<x . (20)

Further in this case

�(i +4)=�(i). (21)
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Proof
By definition of I+ x(i)<x and x(i +1)�x . Thus, from (2)–(5), as x(i +2)�x , one has that
e(i)�(i)=�(i), e(i +1)�(i +1)=−�(i)/K and e(i +2)�(i +2)=−�(i) . Thus,

x(i +3) = �3x(i)+�2�(i)e(i)+��(i +1)e(i +1)+�(i +1)e(i +2)

= �3x(i)+�(i)
(
�2 − �

K
−1

)
, (22)

Observe that �2 −�/K −1<0, from (10). Thus if x(i)�0, x(i +3)<x(i)�x . On the other hand
x(i +3) is negative and hence less than x , if x(i)<0.

Moreover, in this case e(i +3)�(i +3)=�(i)/K . Thus, if x(i)�0 then because of (11),

x(i +4) = �4x(i)+�3�(i)−�2 �(i)

K
−��(i)+ �(i)

K

= �4x(i)+�(i)(1−�2)(1/K −�)<x(i)<x .

If on the other hand, x(i)<0 then

x(i +4)=�4x(i)+�(i)(1−�2)(1/K −�)<0<x . (23)

Finally (21) occurs because �(i +3)=�(i)/K , and x(i +3) and x(i +4) are both less than x . �

Thus if i ∈I+ then either

e(i)=1, e(i +1)=e(i +2)=−1 and e(i +3)=1, (24)

or

e(i)=1, e(i +1)=−1 and e(i +2)=1, (25)

The fact that no more than two successive e(i) can be negative, after the first transition is also true
for the �=1 case. However, when �=1, from (20) one sees that x(i +4)= x(i), and �(i +4)=�(i),
signaling the onset of 4-cycles. Thus, in the �=1 case any occurrence of (24) will lead to 4-cycles
that cannot be arrested. This will not be the case when 0<�<1. The next Lemma characterizes
conditions under which (24) holds.

Lemma 5.4
Consider the system described in (2)–(5) and (10)–(12), (16), and I+ as in (17). Then x(i +2)�x
iff

�2x(i)�
(

1

K
−�

)
�(i)+x . (26)

Proof
Follows from noting that x(i +2)�x is equivalent to

x(i +2)=�2x(i)+��(i)− �(i)

K
>x .

Because of the forgetting factor being smaller than 1, even if x(i)<x and thus e(i)�(i)>0, x(i +1)
need not exceed x(i). The following Lemma shows, however, that if at any point x(i) does become
less than x , then after at most two samples, its value will increase and will continue do so, as long
as it remains below x .

Lemma 5.5
Under (2)–(5), (10)–(12) and (16), suppose i ∈I+. Then the following apply.

(A) Suppose (24) holds and for some k�4 and all n ∈{3, . . . ,k}, e(i +n)=1. Then for all
n ∈{4, . . . ,k},

x(i +n+1)>x(i +n). (27)
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(B) Suppose (25) holds and for some k�4 and all n ∈{2, . . . ,k}, e(i +n)=1. Then also (27)
holds for all n ∈{4, . . . ,k}.

Proof
In case A, from Lemma 5.3, e(i +3)=e(i +4)=1, and �(i +4)=�(i). Thus, as e(i +n)=1, for all
n ∈{3, . . . ,k}, �(i +n)��(i) for all n ∈{4, . . . ,k}. Similarly, in case B e(i +2)=−e(i +1)=1=e(i).
Thus, as e(i +n)=1, for all n ∈{2, . . . ,k}, from (4), �(i +2)=�(i)/K 2, �(i +3)=�(i)/K , and
�(i +n)��(i) for all n ∈{4, . . . ,k}. Further as x>x(i +n), for all n ∈{4, . . . ,k}, and i ∈I+, from
the first part of Lemma 5.2

�(i +n)��(i)>(1−�)x>(1−�)x(i +n).

Thus the result follows from the second part of Lemma 5.2. �

We will use these properties to study the asymptotic behavior of (2)–(5) in the next section.

6. ADM WITH FORGETTING FACTOR: STABILITY

In this section we provide conditions under which (14) and (15) hold. These equations embody
the stability property. To this end, we will continue to assume that x>0. The translation to the
x<0 case will be according to that given at the start of Section 5. The first few lemmas focus on
the values of transitioning �’s. Specifically, the first states that if a given transitioning � exceeds
�x , then the next transitioning � can be no greater.

Lemma 6.1
Suppose (2)–(5), (10)–(12) and (16) hold. Consider i, j two consecutive members of I+, with
j>i . Suppose �(i)>�x . Then �( j)��(i) and j�i +4.

Proof
From Lemma 5.3 one of the following two cases apply.

Case I: x(i +2)<x . We will argue now that if �( j)>�(i), then �(i)<�x ; this is equivalent
to proving the desired result. Now under the case I condition, �(i +1)e(i +1)=−�(i)/K , �(i +
2)e(i +2)=�(i)/K 2, and for all k ∈{i +2, . . . , j}, �(k)e(k)=�(i)K k−i−4. Thus, �( j)>�(i) implies
and is implied by j>i +4, and so x(i +4)<x and x(i +5)<x . Observe that,

x(i +5) = �4x(i +1)+�3�(i +1)e(i +1)+�2�(i +2)e(i +2)+��(i +3)e(i +3)+�(i +4)e(i +4)

= �4x(i +1)−�3 �(i)

K
+�2 �(i)

K 2
+�

�(i)

K
+�(i).

Thus x(i +5)<x implies

�4x(i +1)−�3 �(i)

K
+�2 �(i)

K 2
+�

�(i)

K
+�(i)<x

Consequently, as x(i +1)�x ,

�(i)<
x(1−�4)

1+ �

K
+ �2

K 2
− �3

K

. (28)

Thus, to prove that �(i)��x , it is enough to show that the upper bound in (28) is smaller than
�x , or equivalently by (13) that (1+�+�2)(1+(�/K )(1−�2 +�/K )) is greater than (1+�+�2 +
�3)(1−�2 +�/K ). Indeed, using the fact that K>1, and (10) and (11), the difference between these

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2011; 25:723–739
DOI: 10.1002/acs



ADAPTIVE DELTA MODULATION 731

two quantities equals and obeys:

(1+�+�2)

(
�2

K 2
+�2

(
1− �

K

))
−�3

(
1−�2 + �

K

)

=�2(1+�+�2)+
(

�2

K 2
− �3

K

)
(1+�+�2)−�3

(
1−�2 + �

K

)

=�2(1+�+�2)−�3 −�2
(

�− 1

K

)(
1+�+�2

K
−�2

)

>�2(1+�2)−�2
(

�− 1

K

)(
1+�+�2 −�2

)

>�2(1+�2)−�3(1+�)=�2(1−�)>0,

where we have used the fact that �K>1 and K>1. Hence �(i)>�x implies �( j)��(i). In addition,
as noted in the above argument, �( j)��(i) if and only if j�(i +4), and this yields the second
desired conclusion.

Case II: x(i +2)�x . In this case �(i +2)e(i +2)=−�(i), and as from Lemma 5.3, x(i +3) and
x(i +4) are less than x , �(i +3)e(i +3)=�(i)/K and �(i +4)e(i +4)=�(i). As x(i +2)�x , and
�(i)>�x , we have that

x(i +5) = �4x(i +1)+�3�(i +1)e(i +1)+�2�(i +2)e(i +2)+��(i +3)e(i +3)+�(i +4)e(i +4)

= �3x(i +2)+�(i)
(

1−�2 + �

K

)
> x(�3 +1−�3)= x .

Hence j = i +4 and from Lemma 5.3 �( j)=�(i). �

When �=1, the four-cycles referred to earlier occur, when j = i +4 and x(i +2)�x .
Now, the second step en route to the desired stability result is to provide conditions under

which the next transitioning � is in fact smaller, i.e. if i, j are consecutive members of I+, then
�( j)<�(i). Specifically, recall from Lemma 5.3 that, if i ∈I+, there are at most two succeeding
time instants, i +1 and i +2 at which x(.) can remain greater than x . The Lemma below shows
that if in fact a transitioning � exceeds K �x , and x(.) stays above x only once, then the next
transitioning � will be smaller.

Lemma 6.2
Suppose (2)–(5), (10)–(12) and (16) hold. Consider i, j , two consecutive members of I+, with
j>i . Suppose �(i)>K �x and x(i +2)<x . Then �( j)<�(i).

Proof
Because x(i +2)<x , from the definition of I+, �(i +1)e(i +1)=−�(i)/K , �(i +2)e(i +2)=
�(i)/K 2, and for all k ∈{i +2, . . . , j}, �(k)e(k)=�(i)K k−i−4. Thus, if j = i +2, then �( j)<�(i).
Hence, to prove the Lemma we need to only show that if j>i +2, then x(i +4)�x . Indeed as
j>i +2, and x(i +1)�x ,

x(i +4) = �3x(i +1)+�2�(i +1)e(i +1)+��(i +2)e(i +2)+�(i +3)e(i +3)

= �3x(i +1)+ �(i)

K

(
1−�2 + �

K

)
> x(�3 +1−�3)= x .

The final equality comes from the lemma hypothesis that �(i)>K �x and the definition of
� in (13). �
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The third step is to show in Lemma 6.3 that if a transitioning � is less than or equal to �x , then
the next transitioning � cannot exceed K �x . Taken together Lemmas 6.1 and 6.3 show that if at
any stage a transitioning � becomes less than or equal to K �x , then no future transitioning � can
exceed K �x .

Lemma 6.3
Suppose (2)–(5), (10)–(12) and (16) hold. Consider i, j , two consecutive members of I+, with
j>i . Suppose �(i)��x . Then �( j)�K �x .

Proof
We need to consider the two cases x(i +2)<x and x(i +2)�x .

Case I: x(i +2)<x . In this case �(i +1)e(i +1)=−�(i)/K , �(i +2)e(i +2)=�(i)/K 2, and for
all k ∈{i +2, . . . , j}, �(k)e(k)=�(i)K k−i−4. Suppose j = i +n. If n�5, then

�( j)�K�(i)�K �x,

proving the result. Now suppose n�6, and thus �( j)>K �x . Observe by definition x( j)= x(i +
n)<x . Then

x(i +n)=�2x(i +n−2)+�
�( j)

K 2
+ �( j)

K
<x .

Thus,

x(i +n−2) =
x(i +n)−�( j)

(
�

K 2
+ 1

K

)
�2

<

x −K �x

(
�

K 2
+ 1

K

)
�2

= x

�2

(
1−

( �

K
+1

)
�
)

(29)

On the other hand, because of Lemma 5.2, �(i)>(1−�)x . Thus,

x(i +4) = �3x(i +1)+�2�(i +1)e(i +1)+��(i +2)e(i +2)+�(i +3)e(i +3)

= �3x(i +1)+ �(i)

K

(
1−�2 + �

K

)

> �3x +x
1−�

K

(
1−�2 + �

K

)
(30)

Further, as n�6, from Lemma 5.5, x(i +n−2)�x(i +4). Thus to establish a contradiction we need
only show that the upper bound in (29) is less than the lower bound in (30). Indeed, the difference
between the upper bound in (29) and the lower bound in (30), given by (see (13))

1

�2

[
1− (1−�3)

(
1+ �

K

)
1−�2 + �

K

]
−

[
�3 + 1

K
(1−�)(1−�2)+ �

K

]

has the same sign as

(
1−�2 + �

K

)
−(1−�3)

(
1+ �

K

)
−�5

(
1−�2 + �

K

)
− �2

K
(1−�)

(
1−�2 + �

K

)2

= (1−�5)
(

1−�2 + �

K

)
−(1−�3)

(
1+ �

K

)
− �2

K
(1−�)

(
1−�2 + �

K

)2
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<

[
1−�2 + �

K
−�5 +�7 − �6

K

]
−

[
1+ �

K
−�3 − �4

K

]

=�2(�−1)+�4
(

1

K
−�

)
+�6

(
�− 1

K

)

<�4
(

�− 1

K

)
(�2 −1)<0,

where the last inequality uses (10) and (11).
Case II: x(i +2)�x . In this case �(i +2)e(i +2)=−�(i), and from Lemma 5.3, x(i +3) and

x(i +4) are less than x , and �(i +4)=�(i).
With n defined as in the proof of Case I, suppose (again to obtain a contradiction) that �(i +

n)>K �x . Then in this case n�6, as �(i +5)= K�(i)�K �x . Now, as

x(i +n)=�x(i +n−1)+ �(i +n)

K

one has

x(i +n−1)=
x(i +n)− �(i +n)

K
�

<x

(
1−�

�

)
, (31)

where � is defined in (13). Further, because of Lemma 5.5 and the fact that x(i +2)�x , x(i +
5)>x(i +4) and �(i)>(1−�)x ,

x(i +5) = �3x(i +2)+�2�(i +2)e(i +2)+��(i +3)e(i +3)

+�(i +4)e(i +4)

> x
[
�3 +(1−�)

(
1−�2 + �

K

)]
(32)

As from Lemma 5.4, �(i +n−1)>�(i +5), for all n�6, proving that the upper bound in (31) is
smaller than the lower bound in (32), will establish a contradiction. In fact the difference between
the upper bound in (31) and the lower bound in (32), has the same sign as(

1−�2 + �

K

)
−(1−�3)−�4

(
1−�2 + �

K

)
−�(1−�)

(
1−�2 + �

K

)2

= (1−�4)
(

1−�2 + �

K

)
−�(1−�)

(
1−�2 + �

K

)2 −(1−�3)

= (1−�)

[
(1+�+�2 +�3)

(
1−�2 + �

K

)
−�

(
1−�2 + �

K

)2 −(1+�+�2)

]

= (1−�)
[
(1+�+�2)

(
1−�2 + �

K
−1

)
+�

(
1−�2 + �

K

)(
�2 −

(
1−�2 + �

K

))]

= (1−�)

[
�

(
1

K
−�

)(
1+�+�2 +�−�3 + �2

K

)
+�

(
1−�2 + �

K

)
(�2 −1)

]
<0

where we have used K>1, (10) and (11) repeatedly. �

We now establish conditions that ensure (14), including naturally i /∈I+. Our strategy will be to
show that under these conditions there exists an N such that for all i�N and i ∈I+, there holds:

�(i)�K �x . (33)

We argue that this ensures (14). Assume that such an N exists and consider any consecutive
elements i, j of I+, obeying j>i�N . Define k with i<k� j to be the unique time instant where
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x(k)<x and x(k−1)�x . Then we know that for all i�l�k−1, �(i)��(l). Likewise for all k�l� j ,
�(l)��( j). This proves that if (33) holds for all i ∈I+, and i�N , then it also holds for all i�N .

Now we examine how to ensure (33) holds for all i�N and i ∈I+. Because of Lemmas 6.1
and 6.3, if any transitioning � becomes less than or equal to K �x , all future transitioning �’s
must be bounded by K �x . Thus, to prove (14), it suffices to have the following condition: That for
every i ∈I+, at which �(i)>K �x , there exists a j>i and j ∈I+, such that �( j)<�(i). Then as
all multiplicative changes in � are by factors that are powers of K , (33) must hold for all suitably
large i ∈I+. Now suppose a given i ∈I+, with �(i)>K �x , has the property that for all j>i and
j ∈I+, �( j)��(i). By Lemma 6.1, at all such j , in fact �( j)=�(i). By Lemma 6.2 this implies
that for all j�i and j ∈I+, x( j +2)�x . Since, in this case Lemma 5.3 asserts that x( j +3)<x ,
x( j +4)<x , and �( j +4)=�( j), this also means that j +4∈I+, as failure to transition at this
point will result in a large transitioning �, thereby violating Lemma 6.1. This argument thus shows
the following: if for all N there exists i�N , such that (33) fails, then there must exist an i ∈I+,
such that for all nonnegative integer n,

i +4n ∈I+, x(i +4n+2)�x and �(i +4n)=�(i)>K �x . (34)

The result is in fact a 2-cycle in � (in this case for all �(i +4n+2)=�(i) and �(i +4n+1)=
�(i)/K ) with potentially large amplitudes.

It is possible for such cycles to occur. Consider, for example, the situation where for some i

�(i)��∗ := (1+�2)|x |
�− 1

K

. (35)

Now select x(i)= x∗, which is defined as:

x∗ =−sgn(x)

(
�− 1

K

)
�(i)

1+�2
. (36)

Suppose x>0. In this case since x(i)= x∗<0<x ,

x(i +1)=�x(i)+�(i)=
1+ �

K
1+�2

�(i)�
1+ �

K
1+�2

�∗ = �+K

�K −1
x>x, (37)

where the last inequality is obtained by using the fact that K>1 and �<1. Thus, i ∈I+, and
�(i +1)e(i +1)=−�(i)/K . Consequently,

x(i +2)=�2x(i)+
(

�− 1

K

)
�(i)=

�− 1

K
1+�2

�(i)>x, (38)

where the last inequality is obtained by using (35). Thus, from Lemma 5.3,

x(i +4) = �4x(i)−
(

�− 1

K

)
(1−�2)�(i)

= �4x(i)+(1+�2)(1−�2)x(i)= x(i).

Evidently, in this case 2-cycles result in � and 4-cycles in x(i). Further the resulting �(i) sequence
oscillates with bounds of �∗ and �∗/K . Note two features of this example: First as �−1/K is to
be kept small, �∗ is a large multiple of x . Second, the x(i) sequence in the course of these cycles
changes sign. Below, we show that these features are necessary for such large oscillations in � to
occur, and in Section 7 provides design guidelines for avoiding them.

Theorem 6.1
Consider the system described in (2)–(5) and (10)–(12) and I+ as in (17). Suppose x>0 (respec-
tively, x<0) and at least one of the following two conditions holds: (i) For some i ∈I+ (respectively,
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i ∈I−), (35) is violated. (ii) For all i ∈I+ (respectively, i ∈I−), x(i)�0 (respectively, x(i)�0).
Then under (2)–(5) and (10)–(12) there exists a finite N , such that for all i�N , (33) holds.

Proof
We will prove the result when x>0. Suppose for every N , there exists i�N , such that (33) is
violated. In view of the argument given after Lemma 6.3, this implies that there exists i such that
for all n�0, (34) holds. Thus, for all n�0, one has (see Lemma 5.3),

x(i +4(n+1))=�4x(i +4n)−
(

�− 1

K

)
(1−�2)�(i +4n).

With x∗ defined in (36) we thus have

x(i +4(n+1))−x∗ = �4x(i +4n)−
(

�− 1

K

)
(1−�2)�(i)+

(
�− 1

K

)
�(i)

1+�2

= �4x(i +4n)+�4
�− 1

K
1+�2

�(i)

= �4(x(i +4n)−x∗).

Thus

lim
n→∞ x(i +4n)= x∗, (39)

and as x∗<0, (ii) must be violated. Further, observe that as i ∈I+, the second equation in (34)
ensures that for all n�0

x(i +4n+2)=�2x(i +4n)+
(

�− 1

K

)
�(i)�x .

Because of (39) this requires that

x��2x∗+
(

�− 1

K

)
�(i)=

�− 1

K
1+�2

�(i)

where the last equality follows from (36). Thus (35) holds for this i ∈I+, and in fact all subsequent
transitioning � must be no smaller than this �(i). As this �(i) also obeys the last inequality in
(34), because of Lemma 6.1 no previous transitioning � can be less than this �(i) either, i.e. (i)
must be violated. �

The example given before Theorem 6.1 also shows that (i) and (ii) in Theorem 6.1 together
constitute sufficient conditions for these potentially large amplitude 4-cycles to be possible, e.g.
when x(0)= x∗. In the �=1 case, (ii) in Theorem 6.1 is not necessary for such undesirable cycles
to occur. In particular, (ii) stems from the requirement of (39). Because of the equation before
(39), (39) need not hold if �=1. Further, as noted after Lemma 5.3, when �=1, such cycles in
�(k), and indeed 4-cycles in x(k) are guaranteed for �=1, if even once x(i +2)�x for i ∈I+.
This in general is not true when �<1.

We now examine the error behavior in |x(i)−x | when (33) is assured.

Theorem 6.2
Suppose under (2)–(5) and (10)–(12) there exists a finite N , such that for all i�N , (33) holds.
Then (15) also holds.

Proof
Again we will prove the result when x>0. Choose successive members l and j of I+, l< j and
both greater than N . Clearly, from Lemma 5.3 at most x(l +1) and x(l +2) can be greater than or
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equal to x . Further as x>0, and (10) holds, x(l +2)<x(l +1). Thus, the maximum value of x(k)
for all k ∈{l, l +1, · · · , j} is x(l +1). Because of (33),

x(l +1)=�x(l)+�(l)<(�+K �)x . (40)

Consider now the unique i for which l<i< j , x(i −1)�x and x(i)<x . Then from Lemma 5.3
either i = l +2 or i = l +3, and so from Lemma 5.5 the only candidates for minimum x(k) with
k ∈{l, l +1, . . . , j} are x(i), x(i +1) and x(i +2). Call �(i −1)=��K �x . Clearly,

x(i)=�x(i −1)−��(�−K �)x . (41)

We will now show that neither x(i +1), nor x(i +2) can be less than (�−K �)x . If x(i +1)�x(i),
then of course x(i +1)�(�−K �)x . Suppose, x(i +1)<x(i). As �(i)=�/K , the second part of
Lemma 5.2 leads to the conclusion that �/K<x(1−�). Then,

x(i +1)=�2x(i −1)+�

(
1

K
−�

)
>x[(�2 +(1−�K )(1−�)]. (42)

We show that x(i +1)>(�−K �)x by showing that the coefficient of x in (42) is no smaller than
(�−K �). Indeed as K>1 and (10) holds,

�2 +(1−�K )(1−�)−�+K � = (1−�)(1−�−�K )+K �

> −(1−�)�K +K
1−�3

1−�2 + �
K

> −(1−�)�K +K
1−�3

1+�2 +�

= K
(1−�)(1−�3)

1+�+�2
>0.

Now consider x(i +2). We have

x(i +2)=�3x(i −1)+�
[
1−�2 + �

K

]
>�3x .

We show that �3>(�−K �). Again as K>1 and (10) holds,

�3 −�+K �>�(�2 −1)+ 1−�3

1−�2 +�

which has the same sign as:

1−�3 −�(1−�2)(1−�2 +�)= (1−�)(1−�2 +�4)>0.

We stress again that this Theorem requires in its hypothesis only that �(i) eventually become
no greater than K �x and nothing else.

7. ADM WITH FORGETTING FACTOR: DESIGN GUIDELINES

The parameter � in (13) obeys

K �<K 3 1−�3

�
.

Evidently, for a given K one can make K � as small as one pleases by making �≈1. Thus (15)
indicates that the error in x(i)−x can be made arbitrarily small by choosing a sufficiently small
K �. Of course, a practical limit on how close � can be made to 1 is imposed by the competing
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role of � as an instrument to diminish the effect of x(0)− X̂(0). Observe that by choosing K to be
modest in magnitude, one can achieve the objective of keeping �K ≈1 while still satisfying (10),
K>1 and �≈0.

We now turn to satisfying the requirement to ensure (14). The first such design strategy assumes
that lower and upper bounds on |x | and its sign are available. Frequently, it is desirable to keep
this lower bound greater than zero to permit x to rise above a noise floor. A strategy assuming
such a bound, justified in Lemma 7.1 below, requires that

�(0)<
1+�2

K (�K −1)
|x |= �∗

K 2
. (43)

The Lemma assumes that |x(0)|<|x | and x(0)x�0.

Lemma 7.1
Consider (2)–(5), (10)–(12) with (43) in force. Suppose |x(0)|<|x | and x(0)x�0. Then (14) and
hence (15) holds if (43) holds.

Proof
Again we treat the case x>0. In view of Theorem 6.2 it suffices to show that (33) holds. According
to Theorem 6.1 this in turn is satisfied if for some i ∈I+, �(i)<�∗. Choose such an i to be the
first element in I+.

If i�2 then �(i)�K 2�(0)<�∗. Thus suppose i�3. As by definition x(k)<x for all k�i and
i�3,

x > x(i)��i x(0)+�(0)(K i−1+�K i−2 +�2K i−3)

= �i x(0)+ �(i)

K 2
(K 2 +�K +�2)

� �(i)

K 2
(K 2 +�K +�2).

Thus,

�(i)<
K 2

K 2 +�K +�2
x<x .

As

�∗ = 1+�2

�−1/K
x>x

one thus has �(i)<�∗, proving the result. �

If |x(0)|�|x | and x(0)x>0 then replace |x | in (43) by |x −x(0)|.
Observe that (43) is easy to satisfy as long as x �=0. Simply choose �(0) sufficiently small.

Beyond this, all that required is that x(0)=0. The analysis above indicates that the algorithm will
tolerate modest violations of this last requirement.

8. SIMULATIONS

In this section we show simulations results that compare the behavior of a remotely controlled
network, where the ADM algorithm is used to encode and decode a signal. The objective is to
remotely control a plant. We compare the behavior of the classical ADM (�=1) to that of the
modified algorithm that we propose in this paper. Specifically, we have the setting of Figure 4.
Specifically, we have a stable plant with transfer function 1/(z+1). The compensator 1/(z−1) is
used to achieve robust tracking of all constant signals, using the celebrated internal model principle.
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Figure 4. Block diagram showing the receiver and a plant with transfer function P(z)=1/(z+1) and a
compensator with transfer function C(z)=1/(z−1).
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Behavior of a plant remotely controled using α = 1

Figure 5. This plot shows the output of a plant with transfer function P(z)=1/(z2 −1) when
the signals are encoded using the modified ADM. Here we choose �=1 and K =1.01.

The output of the plant has large oscillations.
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Behavior of a plant remotely controled when α < 1

Figure 6. This plot shows the output of a plant with transfer function P(z)=1/(z−1) when the signals are
encoded using the modified ADM. Here we choose �=0.999 and K =1.01, giving K �	1. The output

of the plant approaches the desired output with negligible oscillations.

The controller and the control loop are at the receiver. A command signal, encoded and decoded by
the ADM algorithm, is transmitted from a remote location. Observe the loop gain here is unstable.
The command signal encoded has a constant value of one.
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Figure 5 demonstrates the performance of Jayant’s ADM with no forgetting factor and K =1.01.
Observe the large oscillations that ensue. The error amplitude is in fact as large as the value the
plant is supposed to track.

Figure 6 demonstrates the performance of ADM with a forgetting factor of 0.999 and K =1.01.
Observe at steady state that the oscillations are negligible, despite the fact that � is so close to one.

These simulations confirm the proved results in this paper.

9. CONCLUSION

Motivated by networked control applications, we have studied the behavior of an ADM algorithm
with a forgetting factor, when the coded signal is a constant. It is known that, in the absence of a
forgetting factor, for generic initializations, convergence is not possible, and 4-cycles must arise.
We have shown by example that these 4-cycles could result in large coding errors.

We have analyzed our proposed modification involving the inclusion of a forgetting factor.
We have shown that in such a case arbitrarily small coding errors can be achieved under mild
assumptions through suitable design selections of the forgetting factor. Areas of further work include
studying this ADM with non-constant signals with essential bandwidth well below the sampling
rate, by using a singular perturbation method. It is also useful to look directly at stabilizability
issues in a remote control setting.
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