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Scale is a widely used notion in computer vision and image understanding that evolved in the form of
scale-space theory where the key idea is to represent and analyze an image at various resolutions.
Recently, we introduced a notion of local morphometric scale referred to as ‘‘tensor scale’’ using an ellip-
soidal model that yields a unified representation of structure size, orientation and anisotropy. In the pre-
vious work, tensor scale was described using a 2-D algorithmic approach and a precise analytic definition
was missing. Also, the application of tensor scale in 3-D using the previous framework is not practical due
to high computational complexity. In this paper, an analytic definition of tensor scale is formulated for n-
dimensional (n-D) images that captures local structure size, orientation and anisotropy. Also, an efficient
computational solution in 2- and 3-D using several novel differential geometric approaches is presented
and the accuracy of results is experimentally examined. Also, a matrix representation of tensor scale is
derived facilitating several operations including tensor field smoothing to capture larger contextual
knowledge. Finally, the applications of tensor scale in image filtering and n-linear interpolation are pre-
sented and the performance of their results is examined in comparison with respective state-of-art meth-
ods. Specifically, the performance of tensor scale based image filtering is compared with gradient and
Weickert’s structure tensor based diffusive filtering algorithms. Also, the performance of tensor scale
based n-linear interpolation is evaluated in comparison with standard n-linear and windowed-sinc inter-
polation methods.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Scale [1–3] may be thought of as the spatial resolution, or a
range of resolutions ensuring a sufficient yet compact data repre-
sentation facilitating a target knowledge learning process. Scale
plays an important role in determining the optimum trade-off be-
tween noise smoothing and perception/detection of structures. In
image analysis and computer vision literature, the notion of scale
evolved from Marr–Hildreth–Koenderink–Witkin scale-space the-
ory [1–4] whose key idea is to represent and analyze an image at
various resolutions. This theory aids in breaking a computer vision
and image-processing task into a hierarchy of tasks starting with
macro-structural properties and gradually progressing toward mi-
cro-structures or the inverse. Often, an image representation at a
specific scale is obtained by convolving the original image with a
Gaussian smoothing kernel whose width is related to the chosen
scale. While scale-space theory has been proven to be useful in a
wide range of applications [5–17], the notion of ‘‘local scale’’ or
‘‘space-variant resolution scheme’’ [18–22] emerged to overcome
ll rights reserved.
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two major practical hurdles – (1) lack of a common mechanism
unifying knowledge extracted at multi-scale analyses, and (2) ab-
sence of optimal scale localization. A knowledge of ‘‘local scale’’
may allow us to spatially tune the neighborhood size in different
processes leading to selection of small neighborhoods in regions
with fine detail or near an object boundary, versus large neighbor-
hoods in deep interiors [23]. Also, ‘‘local scale’’ may be a vital piece
of information leading to developments of effective space-variant
parameter controlling strategies [24].

A knowledge of ‘‘local scale’’ may lead to an effective and auto-
matic mechanism to spatially control a process as a function of lo-
cal scale [23,24]. Towards this direction, Saha and Udupa
introduced a local morphometric scale using a spherical model in
[23,24] and studied its effectiveness in various image processing
applications including image segmentation [23,25–27], filtering
[24], registration [28], and removal of partial volume effects in ren-
dering [29]; see [30] for a survey on local scale. However, both the
scale-space as well as the local scale theory implicitly utilizes an
isotropic model of scales while most structures in the real world
are anisotropic justifying the notion of a ‘‘tensor scale’’, or ‘‘t-scale’’
in short, – a regime of unified and simultaneous representation of
local structure size, orientation and anisotropy. T-scale carries the
promise of serving as a rich parametric descriptor of local structure
and geometry that may benefit several applications including
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object recognition, image preprocessing, registration and compres-
sion. Several applications, including biomedical, geological and sa-
tellite imaging, demand quantitative architectural analyses of
quasi random mesh-like structures [31,32]. Such applications are
likely to directly benefit from the notion of t-scale that provides
a unified knowledge of local size, orientation and anisotropy. Pre-
viously, we introduced a formulation of t-scale using an ellipsoidal
model [30] and studied its usefulness in various image processing
applications [30,31,33]. Andaló [33,34] presented an efficient com-
putational solution for t-scale in binary images and demonstrated
its usefulness in detecting salient points on a given contour. How-
ever, our earlier formulation lacks a precise analytic definition of t-
scale and its computational solution in 3- or higher-dimensional
images is, often, infeasible. Recently, the theory of generalized
and curvature based local scale and their applications have been
studied by Udupa and his research group [35–38].

In this paper, we introduce an analytic formulation of t-scale
that describes the local structure geometry using a local structure
adaptive orthogonal system and presents an efficient computa-
tional solution. Also, we demonstrate the applications of t-scale
in image filtering and interpolation. Several papers are available
in the literature on structure tensor [39–42] computed by convolv-
ing tensor products of intensity gradients with a Gaussian kernel.
Although, structure tensor is a useful concept, it primarily captures
information derived from local gradient field and may not directly
relate to local object geometry. For example, in a homogeneous re-
gion, structure tensor may not carry meaningful information. Here,
we formulate t-scale from a geometric perspective where, at each
image point, the tensor provides direct information of local object
geometry as opposed to the gradient field and thus provides more
precise structural information useful in many applications.
2. Theory and algorithms

In our previous work [30], we introduced the concept of t-scale
using an algorithmic approach but without a precise analytic defi-
nition. Also, the previous algorithmic framework is unrealistic for
3- and higher-dimensional images due to high computational com-
plexity. In the following, first, we will briefly describe the previous
algorithmic definition [30] of t-scale which will be followed by a
new analytic approach to define a local morphometric scale using
a tensor model [43] and an effective computational solution in two
and three dimensions (2-D and 3-D). Also, in the later part of this
section, we introduce the theory and algorithms related to applica-
tions of t-scale to image filtering and interpolation.
Fig. 1. A schematic description of the algorithmic approach to define t-scale in 2-D.
The method starts with edge locations (triangles and black dots) on sample lines
emanating from the candidate image point. Following the axial symmetry of an
ellipse, the edge points on each pair of radially opposite sample lines are
repositioned (black dots to white dots). Finally, t-scale ellipse is computed from
repositioned edge points (triangles and white dots).
2.1. Earlier algorithmic approach to t-scale

The notion of t-scale was motivated by the thought of repre-
senting local structures by an ellipsoid and, in an earlier work, Saha
[30] attempted to define t-scale at any image point p in a 2-D plane
(or, 3-D space) as the largest ellipse (ellipsoid in 3-D) that is cen-
tered at p and is contained inside the same object region defined
by the continuity of homogeneity. However, in the previous ap-
proach, no analytic definition for the ‘‘largest ellipse’’ or ‘‘largest
ellipsoid’’ was provided. Rather, t-scale was defined using an algo-
rithmic approach as follows. Primarily, t-scale at an image point p
is computed by locating edge points visible from p along different
directions which are then used to compute the t-scale ellipse
(ellipsoid in 3-D) at p. Basic steps for t-scale computation are as fol-
lows (see Fig. 1):

Step 1: Trace image intensity along a set of pairs of radially
opposite sample lines emanating from p and approximately
uniformly distributed over the angular space around p.
Step 2: Locate the closest edge point on each sample line (trian-
gles and black dots).
Step 3: Reposition the edge locations on each pair of opposite
sample lines according to the axial symmetry of an ellipse
(black dots to white dots).
Step 4: Compute the t-scale at p using the best-fit ellipse derived
from the repositioned edge points (triangles and white dots).

2.2. T-scale: an analytic definition

Let R denote the set of real numbers and let us consider an im-
age I in Rn where multiple objects are defined as partitions by M
number of (n � 1)-D pseudo-Riemannian manifolds, say,
m1, m2, . . . , mM; we refer to these manifolds as partitioning mani-
folds. Now, let us first consider a point p 2 Rn; we will refer to mi

as the nearest partitioning manifold for p if the distance between
p and mi is shorter than that between p and mj for all i – j. Now,
consider p and a set of i orthogonal vectors s1, s2, . . . , si; there ex-
ists a unique subspace Wi that is parallel to each of the vectors
s1, s2, . . . , si and passes through the point p. An image is formed
over the orthogonal complement W?

i of Wi where the partitioning
manifolds are: W?

i \m1;W
?
i \m2; . . . ;W?

i \mM; let us refer to this
image as an orthogonal complement image of I induced by the vec-
tors s1, s2, . . . , si; and the point p. Finally, t-scale at a point p 2 Rn

in an image I is an ordered sequence of n orthogonal vectors
hs1(p), s2(p), . . . , sn(p)i inductively defined as follows:

1. s1(p) is the vector from p to the closest point on the nearest par-
titioning manifold of I.

2. Given the first i orthogonal vectors, s1(p), s2(p), . . . , si(p), the
(i + 1)th vector si+1(p) points from p to the closest point on the
nearest partitioning manifold in the orthogonal complement
image of I induced by s1(p), s2(p), . . . , si(p) and the point p.

Thus, although, the nearest partitioning manifold defines the t-
scale at a point, the above analytic formulation embrace the case
when there are multiple objects. In 2- and 3-D, we refer to
s1(p), s2(p) and s3(p) (only, for 3-D) as primary, secondary and ter-
tiary t-vectors of p; in general, ‘‘t-vector’’ will refer to any of the
three vectors. The notion of t-scale defined as above is schemati-
cally illustrated in Fig. 2 using a 3-D rabbit femur bone surface
m1 (medium dark gray). As illustrated in the figure, t-scale at a



Fig. 2. An illustration of t-scale using a rabbit femur bone surface (medium dark
gray) forming a 2-D manifold m1. The candidate spel p (solid black dot); the point r
on m1 closest to p gives the primary t-vector s1(p) (black). The orthogonal
complement plane W?

1 and the 1-D manifold W?
1 \m1 are shown in dark and light

gray, respectively. Secondary t-vector s2(p) (solid medium dark line) is defined by
the point on W?

1 \m1 closest to p; finally, s3(p) (solid light gray line) is given by the
closest point on W?

1 \m1 along the line orthogonal to s2(p). It may be noted that
s2(p) and s3(p) coincide with principal directions of m1 at r; this observation is
utilized for efficient computation of 3-D t-scale.
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given point p (solid black dot) in a 3-D image is an ordered se-
quence hs1(p), s2(p), s3(p)i of three orthogonal t-vectors. The pri-
mary t-vector s1(p) (black) defines the direction and distance to
the closest point on the femur surface. The orthogonal complement
plane W?

1 and the 1-D partitioning manifold W?
1 \m1 on W?

1 are
shown in the figure; note that the 1-D partitioning manifold (light
gray) is essentially the intersection between the plane W?

1 (dark
gray) and the original partitioning surface m1 in the 3-D image.
The secondary vector s2(p) (medium dark gray) is defined by the
point on W?

1 \m1 that is closest to p. Once s1(p) and s2(p) are
found, the line (light gray) on which the tertiary vector s3(p) lies
is confirmed; the final direction and the length of s3(p) is defined
by finding the closest point on the partitioning surface along the
line. It may be noted that, often, projections of the two dotted lines
(light and medium dark gray) indicates to two principal directions
on m1 where it meets s1(p); this observation is utilized in our com-
putational solution for t-scale in 3-D.

Here, we will present a matrix representation T(p) of t-scale at p
derived from the ordered sequence of orthogonal t-vectors
hs1(p), s2(p), . . ., sn(p)i facilitating use of conventional tensor alge-
bra. Let ij(p) denote the unit vector along sj(p) and let kjðpÞ be
the magnitude. The matrix representation of t-scale is defined as
follows:
Fig. 3. Different patterns of LoG sign alteration in a 2 � 2 � 2 neighborhood. Spels in a 2 �
LoG at a spel marked with ± is positive then that at spel marked with � is negative or v
crossing. (b) A few examples of topologically inconsistent LoG sign alterations without
TðpÞ¼ ½i1ðpÞ; i2ðpÞ; . . . ; inðpÞ�
k2

1ðpÞ . . . 0

..

. . .
. ..

.

0 . . . k2
nðpÞ

2
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3
775½i1ðpÞ; i2ðpÞ; . . . ; inðpÞ�T :

The above equation represents t-scale using a symmetric positive
semi-definite matrix, an equivalence of covariance matrix. Such a
compact formulation will facilitate efficient realization of a direc-
tion-dependent anisotropic parameter control strategy under a pre-
determined physical model; see Sections 2.4 for an example. Also, a
matrix formulation of t-scale will be helpful in understanding the
interaction between local t-scale structure and the scaling, rotation,
translation and shear components of local Jacobian matrix of an im-
age deformation field [44–46].

2.3. An efficient computation of t-scale

A direct algorithmic formulation of t-scale computation from its
definition faces two major hurdles – (1) object partitions are un-
known in real images and (2) high computational complexity in
three- or higher-dimensions. Here, we outline our algorithmic
solution for 3-D images involving edge detection, distance trans-
form and differential geometric approaches which may be ex-
tended to higher dimensions. In an image, often, we do not know
the partitioning manifolds used to define t-scale. However, we
may realistically assume that detected edge points in an image
lie on these hypothetical manifolds. Also, because of the fact that
these edge points are dense samples on these manifolds, the dis-
tance transform from these edge points is a close approximation
to the unknown distance transform from the hypothetical parti-
tioning manifolds. With this understanding, t-scale may be com-
puted by using gradient analyses and computational geometric
approaches to the distance transform map from the image edge
locations; in the rest of this section, by ‘‘distance transform’’ we
will refer to the distance transform from image edge locations.

Based on the above convention, it is observed that the gradient
of the distance transform map at any given point provides the
direction to the nearest partitioning manifold, i.e., the direction
of the primary t-vector. The magnitude of the primary t-vector is
defined by the distance transform value at the candidate point.
Once the primary t-vector is determined, in 2-D, the secondary t-
vector may be computed by locating the closet manifold along
the line perpendicular to primary t-vector. However, this computa-
tion is not so trivial in 3-D where the first step is to determine the
principal directions on the local partitioning manifold (Fig. 2). This
task is accomplished using a new algorithm that is based on
computational geometric analysis of distance transform. In the
2 � 2 neighborhood are marked with ± or � (light gray) indicating that if the sign of
ice versa. (a) All possible geometric classes of LoG sign alterations with a valid zero
a valid zero crossing.



Fig. 4. Results of t-scale computation. (a) A 2-D image slice from the Brainweb MR brain phantom data. (b) Computed edge locations (red) and gray scale distance transform.
(c) A color coded illustration of 2-D t-scale. (d) Color coding disk at full intensity. (e–g) Same as (a–c) but for 3-D t-scale computation. Results are shown on one image slice;
see text for further explanation. (h–j) Same as (e–g) but from another view. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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following we describe different steps in t-scale computation start-
ing with basic definitions and notations.

In this paper, all computational and algorithmic developments
are confined to 2- and 3-D images, although, these methods may
generalize to higher dimensions. Let Z denote the set of integers.
It may be noted that R2 and R3 represent a 2-D plane and a 3-D
space while Z2 or Z3 denote a digital space in 2- or 3-D, respectively.
We will use Zn as a common reference to Z2 and Z3. An n-D digital
image is defined with an image intensity function f : Zn ! R. Each
element of an n-D digital space is referred to as a spel (an abbrevi-
ation of ‘‘spatial element’’) whose position is denoted by Cartesian
coordinates (x1, x2) or (x1, x2, x3) where x1; x2; x3 2 Z. For any two
spels p; q 2 Zn; jp� qj denotes the Euclidean distance between the
two spels. For any vector v 2 Rn; jvj gives its magnitude.

2.3.1. Edge detection and distance transform computation
The purpose of edge detection is to compute sample points on

unknown partitioning manifolds in a digital image. Here, we have
adopted an edge detection approach combining both Laplacian of
Gaussian (LoG) and Derivative of Gaussian (DoG) operators. Specif-
ically, an edge is located at the zero crossing of LoG if absolute va-
lue of its DoG exceeds a predefined threshold. It may be noted that
edge locations in an image form a set of points in Rn, therefore, a
zero crossing of LoG may not coincide with a spel having integral
coordinates. This problem is solved by analyzing topological con-
sistency of sign alteration for LoG values at spels over a 2n neigh-
borhood; see Fig. 3 for geometric classes of possible alteration
patterns over a 2 � 2 � 2 neighborhood. Alteration patterns in a
geometric class are identical under mirror reflection and/or rota-
tions by integral multiple of 90�. Topologically consistent cases of
LoG sign alterations are shown in Fig. 3a where the points with
identical LoG sign are 6-connected [47–49]; a few examples of
topologically inconsistent alteration patterns are shown in
Fig. 3b. Here, 6-connectivity is enforced for topological consistency
as 26-connectivity allows two voxels with identical LoG sign to
meet at a vertex and such an object may not be locally separated
by a pseudo-Riemannian manifold.

A zero crossing of LoG is identified for topologically consistent
cases, only. To determine the edge location, first, a zero crossing is
located for each pair of points with alternating LoG values in the
2n neighborhood. Finally, the edge is located at the mean of these
zero crossings. The DoG value at the edge location is determined



Fig. 5. Computation of the secondary t-vector s2(p) in 3-D. (a) A partitioning surface with primary t-vector s1(p) (black) at the candidate point p and s1(p)s (gray) for several
qs in the neighborhood. The plane P orthogonal to s1(p) is indicated. (b) s01ðqÞ, projection of the unit vectors s1(q)/|s1(q)| on P, are indicated for several qs in the neighborhood
of p along with the curve formed by the intersection of P and the partitioning surface. (c) Computation of principal directions using PCA of s01ðqÞs (solid) and �s01ðqÞs (dotted).
(d) Projection of principal directions onto partitioning surfaces.
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using n-linear interpolation of DoG values at grid locations in the 2n

neighborhood depending upon image dimensionality. To our
knowledge, the idea of using topological consistency to locate
zero-crossings is new and was not used earlier. Finally, two thresh-
olds thrhigh and thrlow of DoG values and a technique similar to hys-
teresis, originally proposed in Canny’s edge detection algorithm
[50], are used to select both strong and weak edges while avoiding
noisy zero-crossings. The two thresholds thrhigh and thrlow were
determined using the hysteresis threshold detection algorithm for
the Canny edge detector [51,52]. Saha et al. [53] described an appli-
cation-dependent training approach to determine different gradient
parameters.

Distance transform is defined as a function or an image
DT : Zn ! R, where, DTðpÞjp 2 Zn gives its Euclidean distance from
the closest partitioning manifold. Here, the basic idea is to use edge
locations in Rn and then compute an Euclidean distance transform
from these locations. Let E denote the set of all edge points in an
image; the binding box of an edge location e e E is the 2n neighbor-
hood surrounding that point. For every edge location e e E, a dis-
tance transform value is initialized at the 2n vertices of e’s
binding box by directly measuring their distances from e. Follow-
ing this initialization, the Euclidean distance transform values are
perfused inside using a wave propagation algorithm similar to
one adopted in [54,55]. See Fig. 4 for results of edge location and
distance transform computation.

2.3.2. T-scale computation
As mentioned earlier, the primary t-vector s1(p) at a spel p 2 Zn

is computed by analyzing the gradient of DT map at p as follows:

js1ðpÞj ¼ DTðpÞ;

and the unit vector i1(p) along s1(p) is

i1ðpÞ ¼
$DTðpÞ
j$DTðpÞj :

In this paper, we have used the Sobel gradient operator.
Once, the primary t-vector s1(p) is determined, computation of
the secondary t-vector s2(p) in 2-D is straightforward because the
vector lies on the straight line Lp perpendicular to s1(p). Thus, s2(p)
may be computed by locating the closet partitioning manifold
along the straight line Lp. However, a difficulty here is that the edge
locations representing partitioning manifold form a discrete set of
points in Rn and, therefore, a simple sampling approach along a
straight line for locating a manifold may raise the problem of miss-
ing the target manifold. This challenge is overcome by modifying
the search process as follows. Let pþ iDLp ji ¼ 1;2; . . . be the sample
points on a line Lp; the jth sample point is sufficiently close to the
target manifold along Lp if it satisfies the following two conditions:

(1) DTðpþ jDLp Þ 6 dDT.
(2) The angular difference between the two primary t-vectors

s1ðpþ jDLp Þ and s1ðpþ jDLp þ DLp Þ at the two successive sam-
ple points pþ jDLp and pþ jDLp þ DLp is close to 180�; in this
paper, we have used ‘‘P 135�’’ to account for artifacts due to
finite precision and other errors. It may be noted that, if the
angular difference is less than 90�, the two points are on the
same side of the partitioning manifold. Thus, the threshold
of 135� was picked at the middle of the ideal situation of
180� and 90� when the two points fall on the same side of
the partitioning manifold.

The value of dDT is determined by the density of edge locations
and it should also define the sample interval size DLp ; in this paper,
we have used dDT = 1. Finally, the target manifold is located on the
line Lp at a distance of jDLp þ DTðpþ jDLp Þ from p.

Computation of the secondary t-vector s2(p) is more challenging
in 3-D as compared to 2-D. The primary reason behind the difficulty
is that, the determination of s1(p) narrows down s2(p) onto a plane
P perpendicular to s1(p). However, s2(p) may lie along any direction
on the plane. Although, s2(p) is uniquely defined in Section 2.2, its
computation demands a search on image geometry on the plane
P. To keep the computation of t-scale confined in the local neighbor-
hood, we choose the vector s2(p) along the maximum curvature
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direction at the closest point r on a partitioning manifold (see
Fig. 2). A challenge is how to compute the maximum curvature
direction at r because an analytic expression of the partitioning sur-
face is unknown; instead, discrete sample points, i.e., edge loca-
tions, on the surface are available. The estimation of curvature for
discrete 3-D objects has been an important topic in computer
graphics, and several methods have been proposed [56–59]. The ba-
sic idea behind our algorithm of detecting the maximum curvature
direction is to first, determine the primary t-vector s1 at every spel
in the neighborhood of p. The primary t-vector s1 at a neighboring
spel of p intersects the partitioning surface at the vicinity of r (see
Fig. 5). More importantly, the angular inclination of s1 with the
plane P, perpendicular to s1(p), changes most rapidly along the
direction of maximum principal curvature and it changes slowly
along the minimum principal curvature direction. In other words,
the projection of the unit vector along s1 on P takes larger values
along the maximum curvature direction and it takes smaller values
along the minimum curvature. Although our method is primarily
based on this theory, to reduce the effect of noise and discretization,
we determine the principal curvature direction using principal
component analysis (PCA) of these projection vectors on P as fol-
lows. Let q1, q2, . . . , qm be m points in the neighborhood of p and
let i01ðqÞ (solid vectors in Fig. 5b and c) be the projection of the unit
vectors i1(q) on P. To enforce axial symmetry of projection vectors,
each projection vector i01ðqÞ (solid line; Fig. 5c) is accompanied with
an opposite vector �s01ðqÞ (dotted line). PCA of the all points repre-
sented by these vectors is applied to compute the two principal
directions; the eigenvector corresponding to larger eigenvalue
gives the direction for maximum principal curvature while the
other eigenvector provides the direction of the minimum curvature
(see Fig. 5d). The secondary t-vector s2(p) is chosen along the max-
imum curvature direction; the exact value of the t-vector is deter-
mined using the same algorithm adopted for detecting s2(p) in 2-
D. Finally, once the primary and secondary t-vectors are known,
the task of finding the tertiary t-vector in 3-D is equivalent to deter-
mining the secondary t-vector in 2-D.

2.3.3. T-scale smoothing
A smoothing filter is often used to reduce noise in intensity

images. However, smoothing of a t-scale image may not be as triv-
ial as smoothing a scalar image. First, a matrix representation T(p)
of t-scale at p is obtained as described at the beginning of Section 2
to enable various tensor operations and statistical analyses [60].
Weickert [39] has used component-wise Gaussian convolution on
local structure tensors to obtain a smooth representation. To avoid
producing negative eigenvalues in a component-wise averaging
that contradicts the basic definition of t-scale, we have adopted
the Log–Euclidean distance (L–E) approach [61]. Effectiveness of
the L–E approach in diffusion tensor image (DTI) interpolation
has been demonstrated in [61].

Let A ¼ QKQ TjQ: unitary matrix, K: diagonal matrix with real
nonnegative elements, be a symmetric positive semi-definite ma-
trix. The logarithm and the exponential of this matrix are defined
as follows:

log A ¼ Q log KQ T ¼ Q

log k1 � � � 0

..

. . .
. ..

.

0 � � � log kn

2
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3
775Q T;

eA ¼ QeKQ T ¼ Q

ek1 � � � 0
..
. . .

. ..
.

0 � � � ekn

2
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3
75QT:

A smoothing function using the L–E approach is defined using a dis-
crete Gaussian kernel Gr : Zn ! R
GrðaÞ ¼ Ke�
jaj2

2r2 ; if a 2 Gsupport

0; otherwise;

(
;

where Gsupport is the support of the kernel and K is the scalar nor-
malizing factor ensuring that

P
a2Gsupport

GrðaÞ ¼ 1. Finally, the L–E
based tensor smoothing algorithm is designed as follows using
the kernel function Gr defined as above:

TsmoothðpÞ ¼ expðlogðTÞ � GrÞ;

where ‘�’ is the convolution operator.

2.4. T-scale based image filtering

In this section, we describe a t-scale based diffusive filtering
that is primarily developed on the theory of anisotropic diffusion
originally proposed by Perona and Malik [62] and subsequently,
studied by others [24,63]. The primary objective of the new t-scale
based filtering is to govern the diffusion process in a space-variant
and orientation-dependent fashion to optimally fit with local im-
age structures captured in the form of t-scale. Anisotropic diffusion
[62] was originally described to encourage diffusion within a re-
gion (characterized by low intensity gradients) while discouraging
it across object boundaries (characterized by high intensity gradi-
ents). The anisotropic diffusion process at any spel p may be de-
fined as follows:

df
dt
¼ divV ¼ lim

Ds!0

Z
s

V � ds;

where f is image intensity function; t is time variable; ‘‘div’’ is diver-
gence operator; V = GF is diffusion flow vector; G is diffusion con-
ductance function; F is intensity gradient vector; Ds is the
volume enclosed by the surface s surrounding p; and ds = u ds
where u is a unit vector which is orthogonal and outward-directed
with respect to the infinitesimal surface element ds. The key idea of
anisotropic diffusion [62] is to spatially vary the conductance using
a nonlinear and non-increasing function of gradient magnitude, e.g.
G = exp (�|F2/2r2|) resulting into a non-monotonic behavior of flow
against gradients. Guided by the original theory by Perona and Mal-
ik, a diffusive filtering process in a digital image is formulated as an
iterative process as follows:

fiðpÞ ¼
f ðpÞ; if i ¼ 0;

fi�1ðpÞ � KD

X
q2Zn

laðp; qÞVi�1ðp; qÞ � Dðp; qÞ; otherwise;

8<
:

where fi represents image intensity at the ith iteration; la is pixel
adjacency relation; KD is a diffusion constant; Vi�1 is intensity flow
vector at (i � 1)th iteration (see below for a precise definition); and
D(p, q) is unit vector along the direction from p to q and ‘�’ is the vec-
tor dot product operator. Assuming a uniform pixel adjacency rela-
tion, the diffusion constant KD should satisfy the following
inequality to ensure a monotonic intensity variation with iterations
[63]

KD 	
1P

q2Znlaðp; qÞ
;where p 2 Zn:

Using standard 26-adjacency in 3-D, KD = 1/27. The flow vector Vi is
determined by the following equation:

Viðp; qÞ ¼ Giðp; qÞFiðp; qÞ;

where

Fiðp; qÞ ¼
fiðpÞ � fiðqÞ
jp� qj Dðp; qÞ;

and Gi is an orientation- and space-adaptive conductance function at
ith iteration. As mentioned before, Gi should be a nonlinear function
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of local intensity gradient Fi that eventually leads to a non-mono-
tonic behavior of flow with gradients. Gaussian functions, as follows,
have popularly been used for Gi

Giðp; qÞ ¼ e
�jFiðp;qÞj

2

2½rðp;qÞ�2 ;

where r is the control parameter determining the degree of filter-
ing. When r is large, the degree of filtering is high and possibilities
of blurring across boundaries and of smearing out regions contain-
ing fine details increase. On the other hand, when r is small, the fil-
tering process performs conservatively and more noise survives
after filtering. In conventional diffusive filtering methods [62,63],
the diffusion process adapts to local gradient while the controlling
parameter r is kept fixed limiting the fine control on and adaptivity
to local image structural properties. Weickert [39] introduced the
notion of structure tensor to control the r parameter and demon-
strated its use in along-structure smoothing. The motivation of
our work is to use geometric tensor representation of local struc-
tures in filtering that facilitates along-structure smoothing while
Fig. 6. Accuracy of t-scale computation results. (a) An original image slice from the Bra
ground true values for t-scale image. (c) True 3-D t-scale image computed by a dense sp
with blur and noise. (e) Computed 3-D t-scale image for (d) using the proposed method. (
phantom at higher noise and blur.
preserving boundary sharpness by discouraging cross-structure dif-
fusion flow; a preliminary version of t-scale based image filtering
algorithm was presented in [30] using the old formulation of t-
scale. Here, the controlling parameter r is determined by local t-
scale in a space- and direction-variant manner as follows:

rðp; qÞ ¼ rmin þ vðmaxðfpðqÞ; fqðpÞÞÞ � rw:

The above formulation ensures a minimum diffusion of rmin

during the filtering process; the second component in the expres-
sion on the r.h.s. uses a monotonically non-decreasing function v
to control local diffusion process in a direction-variant manner
using the two t-scale derived measures fp(q) and fq(p). The term
rw determines the sensitivity of the diffusion process with local
t-scale measures. The t-scale measure fq(p) is defined as follows:

fpðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iT

pqTðpÞipq

q
;

where ipq is the unit vector along the direction from p to q. Note
that, by considering t-scale T(p) as a covariance matrix, the measure
inweb MR phantom data. (b) Partitions of white and gray matter regions used for
atial sampling approach on the hard partition image of (b). (d) Phantom image slice
f) Log–Euclidean error map for (e) as compared to (c). (g–i) same as (d–f) but for the
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fp(q) gives the square root of the variance of the system along the
vector ipq. Here, fp(q) is treated as an approximate measure of the
radial length of the ellipsoid T(p) along the direction ipq. In this pa-
per, we have used the following functional form for v

vðxÞ ¼ 1� e
� x2

2r2
L ;

where rL is the maximum expected radial length of t-scale ellipse
computed as the maximum DT value in the image. In all experimen-
tal results presented in Section 4, the parameters rw is determined
as the overall noise level in the image computed in the same way as
described in [24]; the value the parameter rmin is chosen as 25% of
the value of rw. Finally, for all experimental results of the filtering
process was run for twenty iterations.

2.5. T-scale based n-linear image interpolation

Linear interpolation is a widely used technique for image resam-
pling [64]. In a one dimensional discrete signal, the linear interpola-
tion in between two successive sample values is defined by the
straight line joining the sample points. In an n-D digital image, image
intensity values are known at spels p 2 Zn with integral co-ordinate
values. Following the principle of linear interpolation, the intensity
value at a location pc 2 Rn is determined as a weighted sum of
intensity values at 2n vertices of the binding box of pc = (x1,x2, . . . ,xn).
Let b�c and d�e denote the floor and ceiling operators. The vertices
Fig. 7. Same as Fig. 6 but f
of the binding box of pc are p1 ¼ ðbx1c; bx2c; . . . ; bxncÞ;
p2 ¼ ðdx1e; bx2c; . . . ; bxncÞ; ::; p2n ¼ ðdx1e; dx2e; . . . ; dxneÞ. The esti-
mated intensity value at pc is given as follows:

f ðpcÞ ¼
P2n

i¼1wif ðpiÞP2n

i¼1wi

;

where

w1 ¼
Yn

j¼1

ðdxje � xjÞ;w2 ¼ ðx1 � bx1cÞ
Yn

j¼2

ðdxje � xjÞ; . . . ;w2n

¼
Yn

j¼1

ðxj � bxjcÞ:

The basic idea of using t-scale in n-linear image interpolation is to
bring the notion of an anisotropic space where distance increases
slower along the direction of the local structure while it increases
faster in the cross-structure direction. A smaller value of fpi

ðpcÞ indi-
cates that the vertex pi is close to the partitioning manifold along
the vector ipjpc

and therefore, the weight of pi in interpolating the
intensity value at pc should be discouraged to avoid cross-region
mixing. On the other hand, a larger value of fpj

ðpcÞ means that pj

is relatively far from the partitioning manifold along the vector
ipjpc

and therefore a generous value of weight for pj may be used
along-the-edge smoothing. Therefore, the t-scale based weights
for linear interpolation are defined as follows:
rom the coronal view.
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w0i ¼ wifpi
ðpcÞ:

Finally, the t-scale based linear interpolation procedure is defined
by the following equation:

f ðpcÞ ¼
P2n

i¼1w0if ðpiÞP2n

i¼1w0i
:

3. Experimental methods

In this section, we describe our experimental methods to exam-
ine the performance of the new t-scale computation as well as the
performance of t-scale based filtering and interpolation methods.
Three different experiments were designed as follows:

(1) T-scale computation: To evaluate the accuracy of the new
efficient t-scale computation method using 3-D Brainweb
phantoms at various levels of noise and blur.

(2) T-scale based image filtering: To evaluate the performance
of the t-scale based anisotropic diffusive method and com-
pare it with gradient and structure tensor based anisotropic
diffusive methods on both 2- and 3-D images.

(3) T-scale based n-linear image interpolation: To evaluate the
performance of t-scale based n-linear image interpolation
method in comparison with standard n-linear and win-
dowed-sinc interpolation methods.
Fig. 8. A qualitative comparison among different diffusive filtering methods. (a) The o
gradient (b), structure tensor (c) and t-scale (d) based diffusive filtering methods. (e–h) Zo
noted that the t-scale based method has outperformed the other two methods in smoothi
the zoomed displays in (e–h).
3.1. Accuracy of t-scale computation method

The purpose of our accuracy evaluation study is to examine the
difference in t-scale obtained using the efficient differential geo-
metric approach as compared to the true value directly computed
as per the definition. To perform this test, we generated phantom
images at five different levels of noise (noise: 8–20%) and blurs
(rblur: 0.5–2.5) from the simulated brain MR image available at
brainweb.bic.mni.mcgill.ca/brainweb and a 3-D pulmonary human
computed tomography (CT) image. The Brainweb MR phantom
data was downloaded with the following parameters – matrix size:
181 � 217 pixels, number of slices: 181, isotropic voxel size: 1 mm,
noise: 3% and intensity non-uniformity: 20%. The pulmonary CT
images was acquired using the following protocol – 120 kV, 100
effective mAs, pitch factor: 1.0, nominal collimation: 64 �
0.6 mm, image matrix: 512 � 512, number of slices: 518, in-plane
resolution: (0.55 mm)2 and slice thickness: 0.5 mm.

Following the fact that the definition of t-scale is based on an
image representation with partitioning manifold, true t-scale scale
may not be computed from a general image. To define the mani-
folds, we partitioned the image into three regions, namely, white
matter, gray matter and background (Figs. 6b and 7b). True mea-
sure of t-scale was obtained from the partitioned image using a
sample-line based approach [30] with a high angular sampling of
10 K lines over the 3-D angular space. Test images for t-scale com-
putation using the new differential geometrical approach were
riginal digital image with natural noise. (b–d) Smooth images obtained by using
omed in displays of the matching region cropped from (a–d), respectively. It may be

ng along the structures while preserving boundaries and effect is more prominent in

http://mouldy.bic.mni.mcgill.ca/brainweb


Table 1
Performance of the 3-D t-scale computation algorithm based on analytic definition at
various levels of noise and blurring. Each row indicates a specific noise level that
increases from top to bottom and each column indicates a specific blur level that
increases from left to right. Results are reported as normalize Log–Euclidean
difference (%) to the result generated by space sampling method for the original
binary phantom.

B1 B2 B3 B4 B5

N1 4.07 5.52 6.13 7.20 8.90
N2 4.17 5.63 6.42 7.54 9.11
N3 4.46 5.75 6.59 7.73 9.29
N4 4.62 5.80 6.70 8.21 9.40
N5 5.17 6.10 7.13 8.79 9.78
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derived from the original image after adding a blur and a white
Gaussian noise (Figs. 6d and g, and 7d and g).

Let WT(p) be the true t-scale matrix at a spel p computed from
the partitioned image and let Wtest(p) denote to the t-scale matrix
representation obtained from a test image by applying the differ-
ential geometric algorithm. Although, t-scale computation meth-
ods were applied on entire image, the error analysis was
confined to white and gray matter regions only to avoid back-
ground; better results were obtained when the background region
was included in error analysis. Let X denote the region over which
the error analysis is performed. The error of t-scale computation is
defined as the average normalized Log–Euclidean distance be-
tween the true and the computed t-scales over the target region
X as follows:

error ¼
2
P

p2Xk logðWssðpÞÞ � logðWdgðpÞÞkP
p2Xðk logðWssðpÞÞk þ k logðWdgðpÞÞkÞ

;

||�|| is the Euclidean norm of a positive definite symmetric matrix.

3.2. Evaluation of t-scale based image filtering

The purpose of the experiment is to examine the performance
of t-scale based filtering methods as compared to intensity based
Fig. 9. Comparative results of image filtering in a 2-D phantom. (a) The original
phantom image. (b) Degraded image after adding Gaussian white noise. (c–e)
Results of gradient (c), structure tensor (d) and t-scale based (d) anisotropic
diffusive filtering methods.
and structure tensor based diffusive filtering algorithms. ITK
implementation [65] of gradient-based diffusive filtering and their
recommended values of 0.125, 3.0 and 5 were used for the time
step, conductance parameter and the iteration number for 3-D im-
age. An algorithm was implemented for structure based diffusive
filtering in accordance to the description of [39] and the parameter
value settings of 0.001 for regularization parameter a, 1 for thresh-
old parameter C, 0.3 for noise scale r, 2 for integration scale q, and
10 for iteration time t were used as suggested by the author. Three
images were used in this experiment – (1) a phantom image gen-
erated with geometric structures at various scales, (2) a photo-
graphic image of an aquarium and (3) a lung CT image. Both
phantom and CT images were corrupted with five different levels
of noise (8–20%) and different filtering algorithms were applied
to the noisy images to qualitatively evaluate their performance. A
measure of residual noise was used to assess the performance a
method and also, a measure of structure blurring was examined
for the phantom image since the knowledge of structures is needed
to define this measure.

Let I be an original phantom or lung image; I was corrupted by
adding a zero-mean Gaussian noise n generating a noisy test image
In = I + n. Noise level was defined over the test region X in an image
as follows:

noise% ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
p2Xn2ðpÞP
p2XI2ðpÞ

vuut :

It may be noted that percent of noise is essentially an inverse mea-
sure of signal to noise ratio or SNR widely used as a measure of
noise level. Let InF denote the image obtained by applying a filtering
algorithm to the noisy image In. Thus the residual noise in the fil-
tered image is nr = InF � I, and an overall measure of residual noise
is defined as follows:

noiser% ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
p2Xn2

r ðpÞP
p2XI2ðpÞ

vuut :

Relative contrast is defined for the phantom image to measure
structure preserving property of a filtering method in terms of ob-
ject to background contrast relative to residual noise. Let Oj and
Bj denote the set of object and background pixels in a phantom im-
age that are no further than m pixels from the object/background
interface. Such pixels are identified in a binary image using stan-
dard morphological operations. We did not use the entire object/
background regions for measure relative contrast as the notion of
structure blurring is absent in deep interior and thus, inclusion of
such regions in analysis only reduces the sensitivity of the measure-
ment. The performance of different methods was analyzed for two
values of 1 and 2 for m. Finally, the relative contrast in an image I
is defined as



Fig. 10. Results of 3-D image filtering. (a) An original image slice from a pulmonary CT image of a patient. (2) Degraded image after adding Gaussian white noise. (c–e) Results
of 3-D image filtering using gradient (c), structure tensor (d) and t-scale (e) based diffusion.

Table 3
Results of quantitative comparison among three different methods in terms of
relative contrast after filtering on 3-D phantom image.

Radius Original relative
contrast

Relative contrast after filtering

G-algorithm S-algorithm T-algorithm

1 voxel 9.1 8.3 8.1 9.5
8.6 7.1 7.7 9.0
8.0 7.3 7.3 8.5
7.1 6.1 6.7 7.8
6.0 4.9 5.5 6.7

2 voxels 9.8 8.6 8.4 10.5
9.2 7.3 8.0 10.1
8.6 7.7 7.7 9.4
7.7 6.5 7.1 8.8
6.5 5.3 5.9 7.6
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RC ¼
jlOj � lBjjffiffiffiffiffiffiffiffiffiffiffiffiffirOjrBj
p ;

where lOj and rOj are the mean and standard deviation of intensi-
ties over Oj while lBj and rBj denote same entities over Bj.

3.3. Evaluation of t-scale based n-linear interpolation

The performance of the t-scale based n-linear image interpola-
tion method was evaluated using a phantom image and several
medical images from different applications and was compared
with standard n-linear and windowed-sinc interpolation methods
[64]. A 3-D phantom image of size 512 � 512 � 512 was generated
a sinusoidal wavy (along the slice direction) pattern of geometric
structures with its scales varying from 5 to 10 voxels. Also, the fol-
lowing sets of medical images were used in our experiment:

(1) The Brainweb MR phantom data described in Section 3.
Table 2
Results of quantitative comparison among three different methods in terms of
residual noise after filtering on different images.

Image Original noise (%) Residual noise (%)

G-algorithm S-algorithm T-algorithm

3-D Phantom 8.0 7.8 7.7 5.9
10.0 9.5 9.5 6.8
12.0 11.1 11.3 7.8
15.0 13.6 13.7 9.3
20.0 17.3 17.8 11.4

3-D Lung CT 8.0 7.5 8.7 4.4
10.0 7.7 9.3 5.3
12.0 9.5 9.9 5.9
15.0 11.7 10.9 7.0
20.0 14.8 14.5 9.4
(2) Seven human pulmonary multi-detector CT images with
voxel size of 0.55 � 0.55 � 0.5 mm3 and in-plane matrix grid
size of 512 � 512 with the number of slices varying between
519 and 728.

(3) Micro-CT images of four cadaveric distal tibia specimens at
28.8 lm isotropic resolution and 3-D image grid size of
768 � 768 � 512.

(4) Five abdominal CT with voxel size of 0.59 � 0.59 � 1.00 mm3

and in-plane matrix grid size of 512 � 512 with the number
of slices varying between 64 and 319.

Starting from an original image I, a sub-sampled images Id was
obtained with different sub-sample rates of 2, 3 or 4. A given image
interpolation method was applied to each sub-sampled image
producing an interpolated image Iint at the original resolution.
The performance of the underlying interpolation method is then
measured by computing the average normalized absolute differ-
ence between the interpolation and the original image as follows:

errorint% ¼
P

p2XjIðpÞ � IintðpÞjP
p2XIðpÞ :
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4. Results and discussion

In this section, we discuss experiments results of the previous
section. Performance of the t-scale computation algorithm is
qualitatively illustrated in Fig. 4 using 2-D image slices from
the Brainweb MR phantom data and the 3-D pulmonary human
CT image. The result of the 2-D t-scale computation algorithm
on a Brainweb MR phantom image slice randomly selected from
mid-brain region is illustrated in Fig. 4a–d. Results of edge loca-
tion and gray scale distance transformation are presented in
Fig. 11. Results of image interpolation on a phantom data. (a) An original image slice. (b) S
sinc (d) and t-scale based n-linear image interpolation. (f–j) Same as (a–e) but for a zoom
observed that t-scale helps preserving small structures and it produces smooth edges wit
sinc method.
Fig. 4b. The color coding scheme by Saha [30] was adopted to dis-
play the 2-D t-scale image at a pixel p that represents an ellipse
C(p). A color value is assigned for the t-scale C(p) such that the
hue component of color indicates its orientation while the satura-
tion and intensity components of the color denote the anisotropy
and thickness, respectively. The color coding disk at maximum
intensity is shown in Fig. 4d. Results of 3-D t-scale computation
on the pulmonary CT image are presented in Fig. 4e–j. 3-D t-scale
at a spel p essentially represent an ellipsoid C(p). Using three
components of color-space, we may display an ellipse. Therefore,
ub-sampled image at the rate 4. (c–e) Result using standard n-linear (c), windowed-
ed part marked in (a). (k–o) Same as (a–e) but for another zoomed region. It may be
hout causing ringing artifacts which is visible for result produced by the windowed-
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in 3-D, the intersection between C(p) and the display plane form-
ing an ellipse is depicted (Fig. 4g and j). Results of both 2-D and
3-D t-scale computation are visually satisfactory. The new algo-
rithm takes 3 s to compute 2-D t-scale for the Brainweb phantom
image slice running in a desktop with a 2.53 GHz Intel(R) Xeon(R)
CPU and Linux OS; the original sample line based t-scale compu-
tation algorithm [30] takes 83 s for the same image. Since a 3-D
implementation of the original sample line based t-scale compu-
tation algorithm is not available, we calculated the expected
Fig. 12. Results of image interpolation on the Brainweb MR phantom image. (a) An orig
Results using standard n-linear (c), windowed-sinc (d) and t-scale based n-linear (e) int
compared to the standard n-linear interpolation without causing ringing artifact associa

Fig. 13. Performance of three interpolation methods on the different phantom and m
2 � 2 � 2. The percentage error was computed over the entire 3-D image while a pair
compared with the standard n-linear and windowed-sinc methods, the t-scale based n-
with the windowed-sinc method varies for different images. An ‘‘NS’’ (non-significant
methods.
computation time as follows. The 2-D sample line based algo-
rithm with 60 sample lines and 60 sample points per line takes
approximately 1 min for an image of size 256 � 256. Therefore,
in 3-D with 900 sample lines (to maintain a comparable angular
sampling rate) the total run time for a 512 � 512 � 518 image
should be approximately

512
256

� �2

� 518� 900
60

� �
� 2 ¼ 1036 h ¼ 43 days:
inal image slice. (b) An image slice from sub-sampled image at the rate of 3. (c-e)
erpolation methods. It may be observed that t-scale has produced crisper edges as
ted with the windowed-sync method.

edical images selected from various clinical applications at sub-sampling rate of
ed t-test was performed based on the percentage error from individual slices. As
linear method has outperformed the first method while comparative performance

) mark is used to indicate statistical insignificance of difference in results by two
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The multiplication by ‘2’ is added to account for tri-linear interpola-
tion in 3-D image instead of bilinear interpolation in 2-D. On the
other hand, the new 3-D t-scale computation algorithm takes
approximately 50 min to compute t-scale for the 3-D CT image.

4.1. Results of accuracy analysis

Results of accuracy analysis of the efficient t-scale computation
algorithm as compared with the results directly obtained from the
analytic definition are qualitatively illustrated in Figs. 6 and 7. As
observed in both figures, at moderate blur and noise, the agree-
ment of the efficiently computed t-scale with the analytic t-scale
computed in absence of noise and blur is visually satisfactory.
However, at very high noise and blur, the fine structures are lost
in t-scale. Results of quantitative analysis are presented in Table 1.
As observed in the table, the performance of the algorithm de-
creases, i.e., error increases with noise as well as blur. Based on
these results, it may be reasonable to conclude that the computa-
tional geometric approach to t-scale is efficient and produces
acceptable t-scale at moderate blur and noise.

4.2. Results of t-scale based image filtering

Here we discuss the performance of t-scale based image filter-
ing algorithm with the gradient and structure tensor based meth-
ods in both 2- and 3-D. Fig. 8 illustrates results of three filtering
algorithms on a photographic image of a fish in an aquarium con-
taining visible noise. Results of application of the three filtering
algorithms are presented in Fig. 8b–d. As observed in these figures,
among the three results, the maximum visual perceptual noise
cleaning and boundary sharpening is achieved using the t-scale
Fig. 14. Same as Fig. 13 but for s

Fig. 15. Same as Fig. 13 but for s
based method (Fig. 8d). This observation is confirmed in enlarged
views (Fig. 8e–h) of a small box selected from the matching region
in the original and the three filtered images. Fig. 9 illustrates re-
sults of different filtering methods on a 2-D phantom image. As ob-
served in the figure, at the finest scale, the gradient and structure
tensor based filtering algorithms have failed to maintain the sepa-
rate identity of the three sinusoidal curves at several locations. On
the other hand, the t-scale based algorithm has successfully pre-
served the separation of the three curves at the finest scale while
maximally cleaning noise over homogenous regions. The superior-
ity of the t-scale based filtering method on the phantom image is
further confirmed in the results of quantitative analysis (Tables 2
and 3) where the t-scale based method has achieved minimum
residual noise and maximum enhancement in relative contrast
measures among all three method algorithms. In these tables, G-,
S- and T-algorithms are used as abbreviations for gradient, struc-
ture tensor and t-scale based diffusive filtering algorithms.

Fig. 10 illustrates the results of three filtering methods on a 3-D
pulmonary CT image. Fig. 10a presents an axial image slice from
the original CT data; here, a MIP display of the image region cover-
ing ±10 image slices around the target slice is used to depict partial
3-D information of the local pulmonary vasculature. The same im-
age region after adding a 12% white Gaussian noise is shown in
Fig. 10b while the results of gradient, structure tensor and t-scale
based filtering algorithms are presented in Fig. 10c–e. As observed
in these results, the diffusive filtering algorithm has reduced some
noise (Fig. 10c) although, it has blurred fine structures at several
locations and also the residual noise is visually apparent. While
the structure blurring is visually less prominent using the structure
tensor based method (Fig. 10d), the presence of residual noise is
visible and the peripheral vessels are visually blurred. On the other
ubsample rate of 3 � 3 � 3.

ubsample rate of 3 � 3 � 3.
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hand, the t-scale based filtering algorithm has successfully cleaned
noise (Fig. 10e) while preserving almost every fine structure visible
in Fig. 10a. As mentioned in Section 3.2, relative contrast may not
be computed for this experiment and the results of quantitative
evaluation of residual noise for different filtering methods at vari-
ous noise levels are presented in Table 2 where it shows that, at all
noise levels, the t-scale-based method has significantly outper-
formed the other two methods.
4.3. Results of t-scale based n-linear interpolation

The performance of t-scale based n-linear image interpolation
method has been examined and compared with standard linear
and windowed-sync interpolation method using a 3-D phantom
and a set of medical images selected from different applications.
Fig. 11 show the results of applications of the three interpolation
methods on the 3-D phantom image after 4 � 4 � 4 down sam-
pling. Improvement in interpolations results using t-scale based
interpolation in terms of structure smoothness is visually appar-
ent. The results of application of the three interpolation methods
on the Brainweb MR phantom data after 4 � 4 � 4 down sampling
is shown in Fig. 12. It appears in the results the t-scale based meth-
od reduces the blur along object boundaries and also the ringing
effects of windowed-sinc algorithm is absent in the t-scale based
interpolation results (Fig. 12e). It may be mentioned that, for all
interpolation experiments, t-scale was computed from the sub-
sampled images. For quantitative analyses, the three methods were
compared under 2 � 2 � 2, 3 � 3 � 3, and 4 � 4 � 4 down sam-
pling rates and the results are presented in Figs. 13–15.

The t-scale based interpolation method has improved the inter-
polation results for datasets at every down sampling rates and the
enhancements are statistically significant except for a few cases as
indicated in Figs. 13 and 14. As compared to windowed-sinc algo-
rithm, the t-scale based method has improved the interpolation re-
sults except for the ankle dataset at 2 � 2 � 2 down sampling.
However, for the lung and abdomen datasets, the windowed-sinc
interpolation method has performed even worse than basic n-lin-
ear method.

It general, it may be observed that, as sample rate gets lower, t-
scale extends its improvement in results as compared to basic n-
linear interpolation while the results using the windowed sinc
methods get worse. This observation may be explained by the fact
that, the use of structure information in the t-scale method leads to
a local context adaptive metric space partially healing for the sub-
sampling loss. On the other hand, for windowed sinc method,
inclusion of a larger neighborhood may not add further meaningful
information and may even worsen the results due to influence by
locally disconnected structures falling inside the extended neigh-
borhood leading to increase of ringing artifacts.
5. Concluding remarks

In this paper, we have presented an analytic formulation for t-
scale for n-D images and have presented an efficient computational
solution in 2- and 3-D. Also, we have provided an efficient compu-
tational solution for t-scale in 2-D and 3-D that is based on several
new methods including gray scale distance transform and
computation of local principal curvature directions on the closest
partitioning manifold represented by discrete edge points. Experi-
mental results in comparison with theoretical results derived un-
der the ideal condition of object partitions with no noise and
blur have demonstrated that the proposed efficient computation
method yields acceptable results at moderate noise and blur with
image structures being visually apparent. Applications of t-scale in
diffusive image filtering and n-linear interpolation has been
presented and the performance of their results in comparison with
respective state of art methods has been examined. Specifically, the
performance of t-scale based filtering has been compared with gra-
dient and structure tensor based diffusive filtering algorithms and
both qualitative and quantitative results have demonstrated
improvements in image filtering using t-scale. The performance
of t-scale based n-linear interpolation is compared standard n-lin-
ear and windowed-sinc interpolation results. Experimental results
have shown a clear improvement using t-scale in n-linear interpo-
lation; in comparison with the windowed-sinc interpolation meth-
od, the t-scale based n-linear interpolation has shown improved
results except for the ankle data set at low sub-sampling. In sum-
mary, the new analytic formulation of t-scale captures rich contex-
tual information of local structure with a practical computational
solution and may benefit a large class of image processing and
computer vision applications including image filtering and inter-
polation. Currently, we are investigating theoretical properties of
t-scale and its applications to other image processing tasks includ-
ing image segmentation, registration and quantitative morpho-
metric analysis.
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